Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 360: 142408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789056

RESUMO

A massive amount of toxic substances and harmful chemicals are released every day into the outer environment, imposing serious environmental impacts on both land and aquatic animals. To date, research is constantly in progress to determine the best catalytic material for the effective remediation of these harmful pollutants. Hybrid nanomaterials prepared by combining functional polymers with inorganic nanostructures got attention as a promising area of research owing to their remarkable multifunctional properties deriving from their entire nanocomposite structure. The versatility of the existing nanomaterials' design in polymer-inorganic hybrids, with respect to their structure, composition, and architecture, opens new prospects for catalytic applications in environmental remediation. This review article provides comprehensive detail on catalytic polymer nanocomposites and highlights how they might act as a catalyst in the remediation of toxic pollutants. Additionally, it provides a detailed clarification of the processing of design and synthetic ways for manufacturing polymer nanocomposites and explores further into the concepts of precise design methodologies. Polymer nanocomposites are used for treating pollutants (electrocatalytic, biocatalytic, catalytic, and redox degradation). The three catalytic techniques that are frequently used are thoroughly illustrated. Furthermore, significant improvements in the method through which the aforementioned catalytic process and pollutants are extensively discussed. The final section summarizes challenges in research and the potential of catalytic polymer nanocomposites for environmental remediation.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Nanocompostos , Polímeros , Recuperação e Remediação Ambiental/métodos , Catálise , Polímeros/química , Poluentes Ambientais/química , Nanocompostos/química , Oxirredução
2.
Int J Biol Macromol ; 274(Pt 2): 133379, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936571

RESUMO

Chitin is the second most abundant natural biopolymer, which is composed of N-acetyl glucosamine units linked by ß-(1 â†’ 4) Chitosan is an N-deacetylated product of chitin. Properties of chitosan and chitin, such as biocompatibility, non-toxic nature, and biodegradability, make them successful alternatives for energy and environmental applications. However, their low mechanical properties, small surface area, reduced thermal properties, and greater pore volume restrict the potential for adsorption applications. Multiple investigations have demonstrated that these flaws can be prevented by fabricating chitosan and chitin with carbon-based composites. This review presents a comprehensive analysis of the fabrication of chitosan/chitin carbon-based materials. Furthermore, this review examines the prevalent technologies of functionalizing chitosan/chitin biopolymers and applications of chitin and chitosan as well as chitosan/chitin carbon-based composites, in various environmental fields (mitigating diverse water contaminants and developing biosensors). Also, the subsequent regeneration and reuse of adsorbents were also discussed. Finally, we summarize a concise overview of the difficulties and potential opportunities associated with the utilization of chitosan/chitin carbon-based composites as adsorbents to remove water contaminants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA