Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
RSC Adv ; 14(44): 31979-31989, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39391614

RESUMO

The oxidative desulfurization of dibenzothiophene in model and real fuel has been investigated by developing an environmentally sustainable catalyst H4SiW12O40@f-kaolinite. The catalyst was synthesized by modifying kaolinite clay with (3-aminopropyl)triethoxysilane (f-kaolinite) followed by immobilizing silicotungstic acid hydrate (H4SiW12O40) onto its surface. The successful synthesis of the catalyst was characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The influence of variables i.e., catalyst dosage, temperature, and oxidant concentration on the conversion of dibenzothiophene was optimized by Box-Behnken design. The highest sulfur reduction (from 1000 to 78.3 ppm, with a conversion rate of 92.17%) was achieved at 70 °C, using a catalyst dosage of 70 mg and 8 mL of H2O2 in a model fuel. ANOVA analysis indicated that the quadratic model (R 2 = 0.99) was well-fitted for dibenzothiophene conversion, with a p-value of 0.2302 suggesting no statistically significant lack of fit compared to pure error. Furthermore, the H4SiW12O40@f-kaolinite demonstrated a reduction of dibenzothiophene concentration from 354 ppm to 224 ppm in a real fuel oil sample. The heterogeneous nanocatalyst showed remarkable stability, maintaining its elemental structure after five cycles without significant efficiency loss, promoting environmental sustainability.

3.
J Mater Chem B ; 12(37): 9364-9374, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39188219

RESUMO

The detrimental effects of widespread pesticide application on the health of living organisms highlight the urgent need for technological advancements in monitoring pesticide residues at trace levels. This study involves the synthesis of a distinctive sensing material, KL@Ni@g-C3N4, which comprises nanocomposites of graphitic carbon nitride with Kraft lignin and nickel. The prepared samples were characterized using FT-IR, PXRD, TEM, SEM, and EDX techniques. The KL@Ni@g-C3N4 nanocomposite was drop-cast on a graphite electrode. Subsequently, this fabricated electrode was used to detect cypermethrin (CYP) residues in drinking water. The redox properties of the fabricated sensors were evaluated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The limit of detection (LOD) of the fabricated sensor was determined to be 0.026 µg mL-1, which is below the maximum residual limits of CYP in the environment (0.5 µg mL-1) and within the acceptable range for food products (∼0.05 to 0.2 µg mL-1). Therefore, this study proposes a promising alternative to conventional methods for detecting pesticides in drinking water.


Assuntos
Água Potável , Eletrodos , Grafite , Lignina , Nanocompostos , Níquel , Praguicidas , Piretrinas , Piretrinas/análise , Nanocompostos/química , Grafite/química , Água Potável/análise , Níquel/química , Níquel/análise , Lignina/química , Lignina/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Técnicas Eletroquímicas , Compostos de Nitrogênio/química , Nitrilas/química , Nitrilas/análise , Nitrilas/toxicidade , Limite de Detecção , Propriedades de Superfície
4.
Chem Asian J ; 19(9): e202400002, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38525873

RESUMO

In this study, we present an approach for ethylene oxide (EO) production that addresses environmental concerns by eliminating greenhouse gas emissions. Our catalyst, Fe2O3/MSM, was synthesized using a hydrothermal method, incorporating Fe2O3 nanoparticles into a well-structured mesoporous silica matrix (MSM). We selected peracetic acid as the oxidant, enabling CO2-free EO production while yielding valuable by-products such as acetic acid, monoethylene glycol, and diethylene glycol. X-ray diffraction (XRD), X- ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analyses confirmed the heteroatom structure of the catalysts and porosity, while Transmission electron microscopy (TEM) analysis provided insights into its morphology. Then, the synthesized catalyst was used in the liquid-phase epoxidation of ethylene for EO production. Our systematic experiments involved varying critical parameters such as temperature, ethylene to oxidant ratio, catalyst dosage, and solvent to optimize EO selectivity and ethylene conversion. The results of this study demonstrated an 80.2 % ethylene conversion to EO with an EO selectivity of 87.6 %. The production process yielded valuable by-products without CO2 emissions, highlighting its environmental friendliness.

5.
RSC Adv ; 13(46): 32424-32432, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928848

RESUMO

Ethylene oxide (EO) is a significant raw material used in many commodities for consumers, particularly ethoxylates, polymers, and certain other glycol derivatives. We synthesized a catalyst by incorporation of chromium oxide into a mesoporous silica material (Cr/MSM) via the hydrothermal method, an effective catalyst for partial ethylene oxidation for producing carbon dioxide (CO2) free EO. Subsequently, XRD, BET, XPS, and TEM were used to analyse the structural characteristics of the Cr/MSM catalyst. The catalytic performance of the synthesized catalyst was assessed in the liquid-phase epoxidation (LPE) of ethylene, utilizing peracetic acid (PAA) as an oxidant. This approach not only circumvented the generation of CO2 but also mitigated the risk of metal leaching. Confirmation of the successful production of EO was achieved through GC chromatography, where the presence of a peak with a retention time (RT) of 8.91 minutes served as conclusive evidence. We systematically explored a range of reaction parameters, including temperature, catalyst concentration, the molar ratio of ethylene to PAA, and solvent effect. This comprehensive investigation aimed to fine-tune the reaction conditions, ultimately improving ethylene conversion and enhancing the selectivity of the catalyst for EO production. This approach can effectively resolve the issues of greenhouse gas emissions and metal leaching that had been associated with previously reported catalysts.

6.
Micromachines (Basel) ; 14(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37241523

RESUMO

Active photocatalysts with an efficiency of 99% were prepared for the degradation of the industrial dye, methylene blue (MB), under visible light irradiation. These photocatalysts comprised Co/Ni-metal-organic frameworks (MOFs), to which bismuth oxyiodide (BiOI) was added as a filler to prepare Co/Ni-MOF@BiOI composites. The composites exhibited remarkable photocatalytic degradation of MB in aqueous solutions. The effects of various parameters, including the pH, reaction time, catalyst dose, and MB concentration, on the photocatalytic activity of the prepared catalysts were also evaluated. We believe that these composites are promising photocatalysts for the removal of MB from aqueous solutions under visible light.

7.
RSC Adv ; 11(59): 37498-37503, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496384

RESUMO

Anticounterfeiting photonic bilayer films were fabricated by sandwiching two solid-state cholesteric liquid crystal films having different handedness. The fabricated photonic bilayer films were successfully applied to patterning by selective photopolymerization. This photonic bilayer film as a new cryptographic technology is of interest for its anticounterfeiting application.

8.
Polymers (Basel) ; 12(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102399

RESUMO

This work focuses on developing a novel method to optimize the fabrication conditions of polyamide (PA) thin film composite (TFC) membranes using the multi-objective genetic algorithm II (MOGA-II) method. We used different fabrication conditions for formation of polyamide layer-trimesoyl chloride (TMC) concentration, reaction time (t), and curing temperature (Tc)-at different levels, and designed the experiment using the factorial design method. Three functions (polynomial, neural network, and radial basis) were used to generate the response surface model (RSM). The results showed that the radial basis predicted good results (R2 = 1) and was selected to generate the RSM that was used as the solver for MOGA-II. The experimental results indicate that TMC concentration and t have the highest influence on water flux, while NaCl rejection is mainly affected by the TMC concentration, t, and Tc. Moreover, the TMC concentration controls the density of the PA, whereas t confers the PA layer thickness. In the optimization run, MOGA-II was used to determine optimal parametric conditions for maximizing water flux and NaCl rejection with constraints on the maximum acceptable levels of Na2SO4, MgSO4, and MgCl2 rejections. The optimized solutions were obtained for longer t, higher Tc, and different TMC concentration levels.

9.
Carbohydr Polym ; 199: 406-414, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143145

RESUMO

A novel step wise synthetic route was developed to prepare amine grafted nanofibers (AGNFs) affinity membrane. The chemical structure of the nanofibers (NFs) after grafting was studied by acquiring Fourier Transform Infrared (FT-IR) spectra and Carbon, Hydrogen and Nitrogen (CHN) data. The morphology of the NFs before and after grafting was studied by Field Emission Scanning Electron Microscope (FE-SEM). FT-IR and CHN data confirmed the introduction of new functional groups into the primary structure of chitosan (CH). FE-SEM showed denser membrane with no deterioration of the NFs morphology after grafting. The aqueous stability of the membranes was studied in distilled water. The AGNFs membranes showed good aqueous stabilities (with only ∼ 6% loss in weight until 24 h and remained stable thereafter) which was less than the weight loss by glutaraldehyde treated nanofibers (GNFs) (∼44% loss in weight until 24 h) and pristine NFs (100% loss in weight as soon as the NFs were immersed in distilled water). The maximum adsorption (qm) capacity of AGNFs for Cu (II) and Pb (II) was observed to be 166.67 mg.g-1 and 94.34 mg.g-1. The adsorption capacity of the present systems was much higher for Cu (II) when compared to the already existing conventional and chitosan adsorbents. This increased might be related not just to the size, but more potentially to the increase in the number of nitrogen binding sites (chelating sites). Nitrogen donates lone-pair of electrons for chelation. The combination of processing into nano size and amine grafting (AG) has significantly increased the adsorption capacity of CH NFs membrane.

10.
Sci Rep ; 7(1): 4090, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642612

RESUMO

A scalable solvothermal technique is reported for the synthesis of a photocatalytic composite material consisting of orthorhombic Ta3N5 nanoparticles and WOx≤3 nanowires. Through X-ray diffraction and X-ray photoelectron spectroscopy, the as-grown tungsten(VI) sub-oxide was identified as monoclinic W18O49. The composite material catalysed the degradation of Rhodamine B at over double the rate of the Ta3N5 nanoparticles alone under illumination by white light, and continued to exhibit superior catalytic properties following recycling of the catalysts. Moreover, strong molecular adsorption of the dye to the W18O49 component of the composite resulted in near-complete decolourisation of the solution prior to light exposure. The radical species involved within the photocatalytic mechanisms were also explored through use of scavenger reagents. Our research demonstrates the exciting potential of this novel photocatalyst for the degradation of organic contaminants, and to the authors' knowledge the material has not been investigated previously. In addition, the simplicity of the synthesis process indicates that the material is a viable candidate for the scale-up and removal of dye pollutants on a wider scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA