RESUMO
Due to their exceptional physicochemical features, green synthesized silver nanoparticles (AgNPs) have been of considerable interest in cancer treatment. In the present study, for the first time, we aimed to green synthesize AgNPs from Euphorbia retusa and explore their anticancer potential on human breast cancer (MCF-7) cells. First, the green synthesized AgNPs (EU-AgNPs) were well characterized by UV-visible spectroscopy, Fourier transmission infrared (FTIR) spectrum, XRD, scanning and transmission electron microscopy (SEM and TEM), and EDX techniques. The characterization data exhibited that EU-AgNPs were spherical in shape and crystalline in nature with an average size of 17.8 nm. FTIR results established the presence of active metabolites in EU-AgNPs. Second, the anticancer effect of EU-AgNPs was evaluated against MCF-7 cells by MTT and neutral red uptake (NRU) assays. Moreover, morphological changes, ROS production, MMP, and apoptotic marker genes were also studied upon exposure to cytotoxic doses of EU-AgNPs. Our results showed that EU-AgNPs induce cytotoxicity in a concentration-dependent manner, with an IC50 value of 40 µg/mL. Morphological changes in MCF-7 cells exposed to EU-AgNPs also confirm their cytotoxic effects. Increased ROS and decreased MMP levels revealed that EU-AgNPs induced oxidative stress and mitochondrial membrane dysfunction. Moreover, ROS-mediated apoptosis was confirmed by elevated levels of proapoptotic marker genes (p53, Bax, caspase-3, and caspase-9) and reduced levels of an antiapoptotic gene (Bcl-2). Altogether, these findings suggested that EU-AgNPs could induce potential anticancer effects through ROS-mediated apoptosis in MCF-7 cells.
Assuntos
Antineoplásicos , Neoplasias da Mama , Euphorbia , Nanopartículas Metálicas , Extratos Vegetais , Prata , Células MCF-7 , Euphorbia/química , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Espécies Reativas de Oxigênio , Análise Espectral , Extratos Vegetais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica , Ácido Ascórbico/farmacologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/fisiologia , Apoptose , Reação em Cadeia da Polimerase em Tempo Real , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologiaRESUMO
Oxidative stress is known to induce cytotoxicity and apoptosis in endothelial cells and indorse development of atherosclerosis. The aim of this research was to assess the cytoprotective effects of ethanolic extract of Nigella sativa (NSE) against H2 O2 -induced cell death in human umbilical vein endothelial cells (HUVECs) and also study the probable mechanisms through which NSE exhibited cyto-protection. The cytotoxicity was measured by exposing the HUVECs with NSE (10-200 µg/ml) and H2 O2 (25-1000 µM) for 24 h. Then, the HUVECs were pretreated with noncytotoxic doses (10-50 µg/ml) of NSE for 24 h before administration of 200 µM H2 O2 for 24 h. The MTT, NRU, and morphological assays were performed to assess the cytotoxicity and cyto-protection. Potential antioxidant activity of NSE on oxidative stress marker (glutathione [GSH] and lipid peroxidation [LPO]) was also evaluated. The fluorescence probe, DCF-DA, and Rh123 were applied to measure the reactive oxygen species (ROS) level and mitochondrial membrane potential. Moreover, flow cytometric analysis and comet assay were used to study the cell cycle arrest and DNA damage, respectively. The concentrations (10, 30, and 50 µg/ml) of NSE were found to protect HUVECs against H2 O2 (200 µM)-induced cytotoxicity in HUVECs. Pretreatment of HUVECs with NSE significantly reduced the LPO and ROS levels and restored the GSH and loss of MMP induced by H2 O2 . Furthermore, NSE inhibited H2 O2 -induced cell cycle arrest and cellular DNA damage in HUVECs. Altogether, these results suggest that NSE can prevent H2 O2 -induced cell death, and NSE could be a potential candidate that can prevent HUVECs against toxicants.
Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Nigella sativa , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Chromatographic purification of the alcoholic extract from the aerial parts of the Saudi plant Nuxia oppositifolia (Hochst.), Benth., resulted in five isolated phenolic compounds. Two flavones, hispidulin (1) and jaceosidin (2), and the phenylethanoid glycosides, verbascoside (3), isoverbascoside (4), and conandroside (5), were identified and their chemical structures were determined by spectroscopic analyses. The insecticidal activity of compounds 1 and 2, in addition to 11 compounds isolated in a previous research (6-16), was evaluated against the Yellow Fever mosquito, Aedes aegypti. Four compounds displayed adulticidal activity with LD50 values of 2-2.3 µg/mosquito. Free radical scavenging properties of the plant extracts and compounds (1-5) were evaluated by measuring the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonate radical cation (ABTSâ¢+) scavenging activity. All compounds exhibited notable activity, compared with the positive control, l-Ascorbic acid. This study suggests that N. oppositifolia could be a promising source of secondary metabolites, some with lethal adulticidal effect against Ae. aegypti.
Assuntos
Aedes/crescimento & desenvolvimento , Antioxidantes/farmacologia , Sequestradores de Radicais Livres/farmacologia , Inseticidas/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Traqueófitas/química , Aedes/efeitos dos fármacos , Animais , Arábia SauditaRESUMO
A number of liver diseases are known to be caused by oxidative stress. Petroselinum sativum (P. sativum; parsley) is popular for its anti-inflammatory, antimicrobial, anticancer, antioxidant and antidiabetic activities. However, till date the hepatoprotective potential of chloroform extract of P. sativum (PSA) on hydrogen peroxide (H2O2) induced cytotoxicity and oxidative stress in human liver (HepG2) cells have not been studied. Therefore, this study was framed to evaluate whether the levels of hydrogen peroxide (H2O2) induced cytotoxicity and oxidative stress in HepG2 cells could be diminished by pretreating the cells with PSA. MTT assay, NRU assay, morphological alterations, glutathione (GSH) depletion, lipid peroxidation (LPO), ROS generation and loss of mitochondrial membrane potential (MMP) were assessed by using non-cytotoxic concentrations (5, 10 and 25 µg/mL) of PSA against H2O2 (0.25 mM) induced damage in HepG2 cells. The results demonstrated that pretreatment of HepG2 cells with PSA offered protective properties by lowering the LPO and ROS generation and elevating the cell viability, GSH and MMP levels. Together, these results suggest that PSA has the hepatoprotective effect on H2O2 induced cell death in HepG2 cells.
Assuntos
Células Hep G2/efeitos dos fármacos , Peróxido de Hidrogênio/efeitos adversos , Petroselinum/metabolismo , Antioxidantes/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Anethum graveolens L. (A. graveolens) commonly known as dill, is an essential oil bearing plant extensively being used in traditional system of medicine. However, the reports on the components and biological responses of A. graveolens essential oil (AG-EO) from Saudi Arabia are scarce. The present study was designed to explore the presence of basic constituents and apoptosis induced by AG-EO in HepG2 cells. The constituents in AG-EO was analyzed by Gas chromatography-Mass spectroscopy (GC-MS). Cytotoxicity of AG-EO was measured by MTT assay and cell cycle arrest and apoptosis assays were conducted by using flow cytometer. Based on GC-MS analysis, the main constituents present in AG-EO were carvone (53.130%), dillapole (25.420%), dihydrocarvone 2 (11.350%) and dihydrocarvone 1 (6.260%). A few other minor components were also identified viz. cis-dihydrocarveol (0.690%), limonene (0.580%), isodihydrocarveol (0.370%), myristicin (0.210%) and cis-arsone (0.190%). The cytotoxicity results showed that AG-EO decrease the cell viability and inhibit the cell growth of HepG2 cells in a concentration-dependent manner. The inhibitory activity of AG-EO was found with IC50â¯=â¯59.6⯱â¯5.64. The cell cycle arrest results showed that HepG2 cells exposed to AG-EO exhibited an increase in G2/M and pre-G1 cell population after 24â¯h exposure. Furthermore, the flow cytometry data revealed the primarily activation of cell death by apoptosis manners in HepG2 cells exposed to AG-EO. Overall, results from this study highlighted the anticancer potential of AG-EO, which could be considered as a new agent for the management of hepatocellular carcinoma.
RESUMO
Teucrium yemense (Defl), locally known as Reehal Fatima, is a medicinal plant commonly grown in Saudi Arabia and Yemen. Phytochemical investigation of the aerial parts of T. yemense yielded six new neoclerodane diterpenoids, namely fatimanol A-E (1, 2, 3, 5, and 6) and fatimanone (4), and the known teulepicephin (7). As both the Teucrium genus and the related Lamiaceae family have previously been widely reported to possess anthelmintic and antimicrobial activities, the structural and biological characterization of the seven diterpenoids was pursued. The structures of the new compounds were elucidated from their 2D NMR and MS profiles and by comparison to related compounds. The structure of fatimanol D (5) was confirmed by X-ray crystallographic analysis. The new structures contribute to the breadth of knowledge of secondary metabolites in this genus.
Assuntos
Diterpenos/isolamento & purificação , Lamiaceae/química , Plantas Medicinais/química , Teucrium/química , Candida albicans/efeitos dos fármacos , Cristalografia por Raios X , Diterpenos/química , Diterpenos Clerodânicos , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Pseudomonas aeruginosa/efeitos dos fármacos , Arábia Saudita , Staphylococcus aureus/efeitos dos fármacosRESUMO
The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ß-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively.
Assuntos
Anti-Infecciosos/química , Antioxidantes/química , Lamiaceae/química , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Sequestradores de Radicais Livres/química , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologiaRESUMO
Phytochemical investigation and chromatographic purification of the n-hexane fraction of the aerial parts of the edible Saudi plant Sisymbrium irio led to the isolation of ß-sitosterol (1), stigmasterol (2) and ß-sitosterol-ß-d-glucoside (3). The cytotoxic effects of the n-hexane, dichloromethane, ethyl acetate and n-butanol fractions were tested against three cancer cell lines viz., MCF-7, HCT-116 and HepG2, using the crystal violet staining (CVS) method, while the antibacterial activity against a number of pathogenic bacterial strains, was also estimated using the broth microdilution assay. The n-hexane fraction showed potent cytotoxic activities against all tested human cancer cell lines (IC50: 11.7-13.4 µg/mL), while the dichloromethane fraction was particularly potent against HCT-116 cells (IC50: 5.42 µg/mL). On the other hand, the n-hexane and EtOAc fractions demonstrated significant inhibitory activities against the Gram positive bacteria S. pyogenes and C. perfringens; and the Gram negative bacterium S. enteritidis. Our results warrant the therapeutic potential of S. irio as nutritional supplement to reduce the risk of contemporary diseases. Additionally, a validated high performance thin-layer chromatography (HPTLC) method was developed for the quantitative analysis of biomarker ß-sitosterol glucoside (isolated in high quantity) from the n-hexane fraction. The system was found to furnish a compact, sharp, symmetrical and high resolution band for ß-sitosterol glucoside (Rf = 0.43 ± 0.002). The limit of detection (LOD) and limit of quantification (LOQ) for ß-sitosterol glucoside was found to be 21.84 and 66.18 ng band-1, respectively. ß-sitosterol glucoside was found to be present only in n-hexane fraction (2.10 µg/mg of dried fraction) while it was absent in the other fractions of S. irio which validated the high cytotoxic and antibacterial activity of n-hexane fraction of S. irio.
RESUMO
BACKGROUND: Cancer is a major health problem and exploiting natural products have been one of the most successful methods to combat this disease. Verbesina encelioides is a notorious weed with various pharmacological properties. The aim of the present investigation was to screen the anticancer potential of V. encelioides extract against human lung cancer (A-549), breast cancer (MCF-7), and liver cancer (HepG2) cell lines. METHODS: A-549, MCF-7, and HepG2 cells were exposed to various concentrations of (10-1000 µg/ml) of V. encelioides for 24 h. Further, cytotoxic concentrations (250, 500, and 1000 µg/ml) of V. encelioides induced oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage in HepG2 cells were studied. RESULTS: The exposure of cells to 10-1000 µg/ml of extract for 24 h, revealed the concentrations 250-1000 µg/ml was cytotoxic against MCF-7 and HepG2 cells, but not against A-549 cells. Moreover, the extract showed higher decrease in the cell viability against HepG2 cells than MCF-7 cells. Therefore, HepG2 cells were selected for further studies viz. oxidative stress (GSH and LPO), reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest, and DNA damage. The results revealed differential anticancer activity of V. encelioides against A-549, MCF-7 and HepG2 cells. A significant induction of oxidative stress, ROS generation, and MMP levels was observed in HepG2 cells. The cell cycle analysis and comet assay showed that V. encelioides significantly induced G2/M arrests and DNA damage. CONCLUSION: These results indicate that V. encelioides possess substantial cytotoxic potential and may warrant further investigation to develop potential anticancer agent.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Extratos Vegetais/farmacologia , Verbesina/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/metabolismo , Células Hep G2 , Humanos , Peroxidação de Lipídeos , Neoplasias Hepáticas , Potencial da Membrana Mitocondrial , Oxirredução , Espécies Reativas de Oxigênio/metabolismoRESUMO
CONTEXT: Garden cress [Lepidium sativum (Brassicaceae)] has been widely used to treat a number of ailments in traditional medicine. The pharmacological and preventive potential of Lepidium sativum, such as anti-inflammatory, antipyretic, antihypertensive, anti-ashthamatic, anticancer, and anti-oxidant, are well known. OBJECTIVE: The present investigation was designed to study the protective effects of chloroform extract of Lepidium sativum seed (LSE) against oxidative stress and cytotoxicity induced by hydrogen peroxide (H2O2) in human liver cells (HepG2). MATERIALS AND METHODS: Cytotoxicity of LSE and H2O2 was identified by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes in HepG2. The cells were pre-exposed to biologically safe concentrations (5-25 µg/ml) of LSE for 24 h, and then cytotoxic (0.25 mM) concentration of H2O2 was added. After 24 h of the exposures, cell viability by MTT, NRU assays, and morphological changes in HepG2 were evaluated. Further, protective effects of LSE on reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), lipid peroxidation (LPO), and reduced glutathione (GSH) levels induced by H2O2 were studied. RESULTS: Pre-exposure of LSE significantly attenuated the loss of cell viability up to 48% at 25 µg/ml concentration against H2O2 (LD50 value = 2.5 mM). Results also showed that LSE at 25 µg/ml concentration significantly inhibited the induction of ROS generation (45%) and LPO (56%), and increases the MMP (55%) and GSH levels (46%). DISCUSSION AND CONCLUSION: The study suggests the cytoprotective effects of LSE against H2O2-induced toxicity in HepG2. The results also demonstrate the anti-oxidative nature of LSE.
Assuntos
Citoproteção/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Lepidium sativum/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismoRESUMO
Ethanol is a well-known hepatotoxic agent and date fruits have been associated with their biological actions. In current study, we have investigated the hepatoprotective potential of DFE on ethanol-induced cellular damages in human hepatoma (HepG2) cells. The hepatoprotective potential was assessed by exposing the HepG2 cells to non-toxic concentrations (15, 30, and 60 µg/mL) of DFE for 24â¯h; then toxic concentration (500 µM) of ethanol. Our results demonstrated that pretreatment with DFE significantly prohibited ethanol-induced hepatotoxicity in HepG2 cells. We observed that DFE treatment increased cell viability, reduced LDH leakage, restored cellular morphology, and inhibited caspase-3 enzyme activity in a dose dependent way, induced by ethanol. Further DFE was also effective in restoring the LPO, GSH, and catalase levels towards normal altered by ethanol. Our results also revealed that ethanol-induced ROS generation was significantly inhibited by DFE. The ethanol-induced mRNA expression of apoptotic related genes (p53, caspase-3, caspase-7, Bax, and Bcl-2) were also normalized by pretreatment with DFE. The findings from this study indicated that DFE can significantly protect HepG2 cells against ethanol-induced hepatotoxicity. Our study also provides scientific validation for the traditional use of DFE, aiming to understand its hepatoprotective potential. Altogether, to the best of our knowledge, this is the first study demonstrated that ethanol-induced hepatotoxicity can be prohibited by the DFE. Thus, DFE has a potential application in nutraceuticals as a therapeutic agent to prevent liver diseases.
Assuntos
Apoptose , Etanol , Frutas , Neoplasias Hepáticas , Phoeniceae , Extratos Vegetais , Humanos , Células Hep G2 , Apoptose/efeitos dos fármacos , Etanol/toxicidade , Extratos Vegetais/farmacologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Phoeniceae/química , Frutas/química , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substâncias Protetoras/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Caspase 3/metabolismoRESUMO
BACKGROUND: Nanotechnology and material science have developed enormously fast in recent years. Due to their excellent magnetic properties, iron oxide nanoparticles (IONPs) have been broadly applied in the field of bioengineering and biomedical. Thus, it is important to evaluate the safety issues and health effects of these nanomaterials. The present investigation was aimed to evaluate the adverse effects of IONPs on human umbilical vein endothelial cells (HUVECs). METHODS: The cytotoxic potential of IONPs was assessed by MTT and neutral red uptake (NRU) assays. The impact of IONPs on oxidative stress markers (glutathione (GSH) and lipid peroxidation (LPO)), reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP) was also examined. Furthermore, the toxic effect of IONPs was quantified by assessing DNA damage, cell cycle arrest, and apoptosis by quantitative real time PCR. RESULTS: We found that IONPs induce a dose-dependent cytotoxicity on HUVECs with IC50 value of 79.13 µg/mL. The results also displayed that IONPs induce oxidative stress, ROS production, and mitochondrial membrane dysfunction. The comet assay results exhibited IONPs induces DNA damage in HUVECs. We found significant cell cycle arrest at SubG1 phase in treated cells and consequent cell death was evidenced by microscopic analysis. Moreover, IONPs display substantial up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic gene evidenced by real time qPCR. CONCLUSION: Overall, our results clearly demonstrated that IONPs have the potential to induce cytotoxicity, DNA damage, cell cycle arrest, and apoptosis in HUVECs mediated through oxidative stress and ROS production. Thus, IONPs are cytotoxic and it should be handled with proper care.
Assuntos
Nanopartículas , Estresse Oxidativo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Dano ao DNA , Pontos de Checagem do Ciclo Celular , Apoptose , Glutationa/metabolismo , Nanopartículas Magnéticas de Óxido de FerroRESUMO
Copper oxide nanoparticles (CuONPs) are purposefully used to inhibit the growth of bacteria, algae, and fungi. Several studies on the beneficial and harmful effects of CuONPs have been conducted in vivo and in vitro, but there are a few studies that explain the toxicity of CuONPs in human airway epithelial cells (HEp-2). As a result, the purpose of this study is to look into the dose-dependent toxicity of CuONPs in HEp-2 cells. After 24 h of exposure to 1-40 µg/ml CuONPs, the MTT and neutral red assays were used to test for cytotoxicity. To determine the mechanism(s) of cytotoxicity in HEp-2 cells, additional oxidative stress assays (LPO and GSH), the amount of ROS produced, the loss of MMP, caspase enzyme activities, and apoptosis-related genes were performed using qRT-PCR. CuONPs exhibited dose-dependent cytotoxicity in HEp-2 cells, with an IC50 value of ~ 10 µg/ml. The morphology of HEp-2 cells was also altered in a dose-dependent manner. The involvement of oxidative stress in CuONP-induced cytotoxicity was demonstrated by increased LPO levels and ROS generation, as well as decreased levels of GSH and MMP. Furthermore, activated caspase enzymes and altered apoptotic genes support CuONPs' ability to induce apoptosis in HEp-2 cells. Overall, this study demonstrated that CuONPs can cause apoptosis in HEp-2 cells via oxidative stress; therefore, CuONPs may pose a risk to human health and should be handled and used with caution.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Caspases/metabolismo , Morte Celular , Cobre/toxicidade , Células Epiteliais/metabolismo , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Vermelho Neutro/farmacologia , Estresse Oxidativo , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Rosa damascena Mill (Damask rose), belonging to the Rosaceae family, is known for medicinal purposes in traditional medicine system. However, its anticancer activity has not been studied yet in detail. Herein, we aimed to investigate the cytotoxic effects of R. damascena hexane (RA-HE) and methanolic (RA-ME) extracts against human breast (MCF-7), lung epithelial (A-549), and cervical (HeLa) cancer cells. The RA-HE and RA-ME showed more potent cytotoxic effects against HeLa cells with an IC50 of 819.6 and 198.4 µg/ml, respectively. Further, cytotoxic concentrations of most effective extract (RA-ME) were used to evaluate the mechanism of cytotoxicity involved in HeLa cells. A concentration-dependent induction of lipid peroxidation (LPO) and reduction of glutathione (GSH) in HeLa cells treated with 250-1000 µg/ml of RA-ME confirms the association of oxidative stress. We also detected a noteworthy increase in reactive oxygen species (ROS) production and a decline in mitochondrial membrane potential (MMP) level in RA-ME-exposed HeLa cells. Flow cytometric data showed a strong dose-response relationship in cell cycle analysis between subG1 phase in HeLa cells and RA-ME treatment. Similarly, a concentration-dependent increase was recorded with Annexin V assay in HeLa cells going to late apoptosis. In conclusion, our findings suggest that RA-ME-induced cytotoxicity and apoptosis in HeLa cells are mediated by oxidative stress.
Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Estresse Oxidativo , Rosa/química , Neoplasias do Colo do Útero/patologia , Células A549 , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Glutationa/metabolismo , Células HeLa , Hexanos/química , Humanos , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Metanol/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológicoRESUMO
BACKGROUND: Breast cancer is the most common cause of deaths in women. The search for traditionally used medicinal plants which can serve as non-toxic and affordable anticancer drugs is the need of the hour. This study aimed to investigate the anticancer potential of extracts of L. coronopifolia against human breast carcinoma cell line (MDA-MB-321). METHODS: The MDA-MB-231 cells were plated in 96 well plates and exposed to 10-1,000 µg/ml of L. coronopifolia for 24 h. The cytotoxic response of different extracts was measured by MTT assay, neutral red uptake (NRU) assay and cellular morphological alterations under the microscope. RESULTS: A concentration-dependent decrease in the cell viability of MDA-MB-231 cells was observed after the exposure of petroleum ether, ethyl acetate, chloroform, and ethanol extracts of L. coronopifolia. The cell viability was found to be 82%, 89% and 98% at 1000, 500 and 250 µg/ml, respectively in petroleum ether, 37%, 75% and 88% at 1,000, 500 and 250 µg/ml, respectively in ethyl acetate extract, 30%, 35% and 64% at 1,000, 500 and 250 µg/ml, respectively in chloroform extract and 44%, 65% and 82% at 1000, 500 and 250 µg/ml, respectively in ethanolic extract of L. coronopifolia exposed MDA-MB-231 cells. The results also exhibited morphological alterations in MDA-MB-231 cells exposed to various extracts. The cells treated with 250- 1000 µg/ml lost their original morphology and cell linkage as compared to control cells. CONCLUSION: These preliminary results suggest the promising anticancer potential of petroleum ether, ethyl acetate, chloroform, and ethanol extracts of L. coronopifolia against MDA-MB-321 cells. Further studies are required to know the mechanism(s) involved in the cell death.
Assuntos
Acetatos/química , Alcanos/química , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Clorofórmio/química , Etanol/química , Lavandula/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células Tumorais CultivadasRESUMO
Cancer has been recognized as one of the life-threating diseases. Breast cancer is a leading cause of mortality among women. In spite of current developments in the therapy and diagnosis of cancer, the survival rate is still less. Recently, plant-derived natural products gain attention as anticancer agents due to the nontoxic nature. Therefore, the aim of present study was to investigate the anticancer capacity of corn silk extract (CSE) on human breast cancer (MCF-7) and normal human mesenchymal (hMSC-TERT4) cells. Following 24 h treatment to corn silk extract, the cytotoxicity was assessed by MTT, NRU, and morphological assays. The oxidative stress markers (GSH and LPO), ROS production, MMP change, and expression of apoptotic marker genes (p53, Bax, Bcl-2, caspase-3, and caspase-9) were also studied in MCF-7 cells treated at 250 to 1000 µg/ml of CSE for 24 h. Our results showed that CSE decreased the cell viability and increased the apoptosis in a dose-dependent manner. The level of LPO and ROS production was found significantly higher; however, GSH and MMP level was observed lower in CSE-treated MCF-7 cells. The real-time PCR data showed a significant upregulation in p53, Bax, caspase-3, and caspase-9 and downregulation in the mRNA expression of Bcl-2 genes in MCF-7 cells exposed to CSE. Collectively, the data from this study stated that corn silk extract induced apoptosis via the ROS-mediated mitochondrial pathway in MCF-7 cells.
Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama , Mitocôndrias/metabolismo , Proteínas de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Zea mays/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Mitocôndrias/patologia , Proteínas de Neoplasias/biossíntese , Proteínas de Plantas/química , Regulação para Cima/efeitos dos fármacosRESUMO
In this study, silver nanoparticles (AgNPs) were synthesized using aqueous extract of Nepeta deflersiana plant. The prepared AgNPs (ND-AgNPs) were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). The results obtained from various characterizations revealed that average size of synthesized AgNPs was 33 nm and in face-centered-cubic structure. The anticancer potential of ND-AgNPs was investigated against human cervical cancer cells (HeLa). The cytotoxic response was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes. Further, the influence of cytotoxic concentrations of ND-AgNPs on oxidative stress markers, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest and apoptosis/necrosis was studied. The cytotoxic response observed was in a concentration-dependent manner. Furthermore, the results also showed a significant increase in ROS and lipid peroxidation (LPO), along with a decrease in MMP and glutathione (GSH) levels. The cell cycle analysis and apoptosis/necrosis assay data exhibited ND-AgNPs-induced SubG1 arrest and apoptotic/necrotic cell death. The biosynthesized AgNPs-induced cell death in HeLA cells suggested the anticancer potential of ND-AgNPs. Therefore, they may be used to treat the cervical cancer cells.
RESUMO
BACKGROUND: Cancer is one of the major causes of death worldwide. The plant-derived natural products have received considerable attention in recent years due to their diverse pharmacological properties including anticancer effects. Nepeta deflersiana (ND) is used in the folk medicine as antiseptic, carminative, antimicrobial, antioxidant, and for treating rheumatic disorders. However, the anticancer activity of ND chloroform extract has not been explored so far. OBJECTIVES: The present study was aimed to investigate the anticancer activities of chloroform Nepeta deflersiana extract and various sub-fractions (ND-1-ND-15) of ND against human breast cancer cells (MCF-7) and human lung cancer cells (A-549). MATERIALS AND METHODS: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and neutral red uptake assays, and cellular morphological alterations using phase contrast light microscope were studied. Cells were exposed with 10-1000 µg/ml of sub-fractions of ND for 24 h. RESULTS: Results showed that selected sub-fractions of the chloroform extract significantly reduced the cell viability of MCF-7 and A-549 cells, and altered the cellular morphology in a concentration-dependent manner. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity compared to other fractions whereas, ND-1 did not cause any cytotoxicity even at higher concentrations. The A-549 cells were found to be more sensitive to growth inhibition by all the extracts as compared to the MCF-7 cells. CONCLUSION: The present study provides preliminary screening of anticancer activities of chloroform extract and sub-fractions of ND, which can be further used for the development of a potential therapeutic anticancer agent. SUMMARY: Nepeta deflersiana extract exhibit cytotoxicity and altered the cellular morphology. Sub-fractions of the chloroform extract of Nepeta deflersiana reduced the cell viability of MCF-7 and A-549 cells. Among the sub-fractions, ND-10 fraction showed relatively higher cytotoxicity. The A-549 cells were found to be more sensitive as compared to the MCF-7 cells. Abbreviations used: MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NRU: Neutral red uptake; DMEM: Dulbecco's modified eagle medium; FBS: Fetal bovine serum; PBS: Phosphate buffer saline; DMSO: Dimethyl sulfoxide.