Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(12): e22575, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046163

RESUMO

Medicinal plants are the main source of active chemical constituents responsible for curing or mitigating various ailments. To discover new, safe, and effective drug candidates the isolation and screening of natural products are essential. In the current research work, lapachol was isolated from Fernandoa adenophylla, which was evaluated for anti-inflammatory effect followed by molecular docking. The isolated compound was tested for anti-inflammatory effects using in vitro (HRBC assay) and in vivo (xylene-induced ear edema) experimental models. Various concentrations of lapachol demonstrated anti-inflammatory effects with a percent potential of 77.96 at 100 µM. Different concentrations of Lapachol demonstrated a dose-dependent anti-edematous effect with a maximum percent effect of 77.9 % at a higher dose. The histopathological study revealed that the application of xylene led to a significant increase in ear thickness, along with clear signs of ear edema and infiltration of inflammatory cells, as well as epidermal hyperplasia of the dermis when compared to the control group. However, treatment with the investigated compound showed a significant reduction in ear thickness and pathological differences comparable to those observed in the group treated with diclofenac. Density functional theory calculations are accomplished to gain insight into structural and spectroscopic properties. Geometry optimization, FMO, and MEP analyses are performed. Overall, the molecular docking results indicate that lapachol has potential as a COX inhibitor by binding to the active sites of both COX-1 and COX-2 enzymes.

2.
Fitoterapia ; 171: 105703, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852388

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease linked to memory impairment. A current investigation was performed to assess the neuroprotective effect of Diospyrin, a novel therapeutic agent, for the curing of Alzheimer's disease. For this purpose, in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory assays and antioxidant studies were conducted, whereas in-vivo studies involved different behavioral animal models tests such as elevated plus maze (EPM), morris water maze (MWM) and paddling Y-maze test. Results of the in-vitro analysis showed IC50 values of 95 µg/mL for AChE and 110 µg/mL for BChE as compared to the standard drug donepezil (IC50: 95 & 85 µg/mL, respectively). DPPH antioxidant assay showed a maximum of 72.85% inhibition (IC50: 139.74 µg/mL) of DPPH-free radicals at the highest concentration of 1000 µg/mL as compared to the ascorbic acid (IC50: 13.72 µg/mL). Moreover, the in-vivo analysis revealed that diospyrin treatment demonstrated gradual betterment in memory and enhanced motor functionality. On the other hand, the computational analysis also showed that the diospyrin had exceptional binding affinities for both AChE and BChE enzymes. In the net shell, it may be deduced that our compound diospyrin could be a valuable drug candidate in managing neurodegenerative disorders like AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/uso terapêutico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA