Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(10): 1563-1575, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076764

RESUMO

The changing global climate have given rise to abiotic stresses that adversely affect the metabolic activities of plants, limit their growth, and agricultural output posing a serious threat to food production. The abiotic stresses commonly lead to production of reactive oxygen species (ROS) that results in cellular oxidation. Over the course of evolution, plants have devised efficient enzymatic and non-enzymatic anti-oxidative strategies to counteract harmful effects of ROS. Among the emerging non-enzymatic anti-oxidative technologies, the chloroplast lipophilic antioxidant vitamin A (Tocopherol) shows great promise. Working in coordination with the other cellular antioxidant machinery, it scavenges ROS, prevents lipid peroxidation, regulates stable cellular redox conditions, simulates signal cascades, improves membrane stability, confers photoprotection and enhances resistance against abiotic stresses. The amount of tocopherol production varies based on the severity of stress and its proposed mechanism of action involves arresting lipid peroxidation while quenching singlet oxygen species and lipid peroxyl radicals. Additionally, studies have demonstrated its coordination with other cellular antioxidants and phytohormones. Despite its significance, the precise mechanism of tocopherol action and signaling coordination are not yet fully understood. To bridge this knowledge gap, the present review aims to explore and understand the biosynthesis and antioxidant functions of Vitamin E, along with its signal transduction and stress regulation capacities and responses. Furthermore, the review delves into the light harvesting and photoprotection capabilities of tocopherol. By providing insights into these domains, this review offers new opportunities and avenues for using tocopherol in the management of abiotic stresses in agriculture.

2.
Physiol Plant ; 174(3): e13687, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35514154

RESUMO

Metalloids in plants have diverse physiological effects. From being essential to beneficial to toxic, they have significant effects on many physiological processes, influencing crop yield and quality. Aquaporins are a group of membrane channels that have several physiological substrates along with water. Metalloids have emerged as one of their important substrates and they are found to have a substantial role in regulating plant metalloid homeostasis. The present review comprehensively details the multiple isoforms of aquaporins having specificity for metalloids and being responsible for their influx, distribution or efflux. In addition, it also highlights the usage of aquaporin-mediated transport as a selection marker in toxic screens and as tracer elements for closely related metalloids. Therefore, aquaporins, with their imperative contribution to the regulation of plant growth, development and physiological processes, need more research to unravel the metalloid trafficking mechanisms and their future applications.


Assuntos
Aquaporinas , Metaloides , Aquaporinas/metabolismo , Transporte Biológico , Metaloides/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
3.
Foodborne Pathog Dis ; 19(11): 750-757, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301255

RESUMO

Milk is a putrescible commodity that is extremely prone to microbial contamination. Primarily, milk and dairy products are believed to be easily contaminated by pathogenic microorganisms, including Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus. The microbiological quality of raw milk and dairy products regarding foodborne pathogens is of paramount importance due to concern of human health. In this study 400 buffalo raw milk samples were screened for assessing the prevalence of L. monocytogenes, Salmonella spp., and S. aureus. This study implemented uniplex-polymerase chain reaction (u-PCR) and multiplex-polymerase chain reaction (m-PCR) assays for the fast simultaneous detection of these pathogens comparing to the conventional culturing methods. Raw milk samples were found contaminated with the prevalence of 2.2%, 4.0%, and 14.2% for L. monocytogenes, Salmonella spp., and S. aureus, respectively. These pathogens were detected with the optimized polymerase chain reaction assays after 6 h of enrichment. u-PCR and m-PCR demonstrated the limit of detection as 104, 102, and 10 cells/mL after 6, 12, 18, and 24 h for each culture of the pathogens. A high sensitivity (10 colony-forming unit [CFU]/mL) of the m-PCR protocol was noted. The developed protocol is a cost-effective and rapid method for the simultaneous detection of pathogens associated with raw milk and dairy industries.


Assuntos
Listeria monocytogenes , Leite , Animais , Humanos , Leite/microbiologia , Búfalos , Staphylococcus aureus/genética , Listeria monocytogenes/genética , Salmonella/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Microbiologia de Alimentos
4.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615299

RESUMO

Recently, the application of salicylic acid (SA) for improving a plant's resistance to abiotic stresses has increased. A large part of the irrigated land (2.1% out of 19.5%) is severely affected by salinity stress worldwide. In 2020, total production of wheat (Triticum aestivum) was 761 million tons, representing the second most produced cereal after maize; therefore, research on its salinity tolerance is of world concern. Photosynthetic attributes such as net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E) were increased significantly by the application of SA. Salt stress increased antioxidant enzyme activity; however, SA further boosted their activity along with proline level. We conclude that SA interacts with meristematic cells, thereby triggering biochemical pathways conductive to the increment in morphological parameters. Further research is required to dissect the mechanisms of SA within the wheat plants under stress.


Assuntos
Antioxidantes , Triticum , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Triticum/metabolismo , Fotossíntese , Estresse Fisiológico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo
5.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296438

RESUMO

ß-cyclocitral (ßCC), a main apocarotenoid of ß-carotene, increases plants' resistance against stresses. It has recently appeared as a novel bioactive composite in a variety of organisms from plants to animals. In plants, ßCC marked as stress signals that accrue under adverse ecological conditions. ßCC regulates nuclear gene expression through several signaling pathways, leading to stress tolerance. In this review, an attempt has been made to summarize the recent findings of the potential role of ßCC. We emphasize the ßCC biosynthesis, signaling, and involvement in the regulation of abiotic stresses. From this review, it is clear that discussing compound has great potential against abiotic stress tolerance and be used as photosynthetic rate enhancer. In conclusion, this review establishes a significant reference base for future research.


Assuntos
Diterpenos , beta Caroteno , beta Caroteno/metabolismo , Plantas/metabolismo , Diterpenos/metabolismo , Aldeídos/metabolismo , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
6.
Biofouling ; 37(7): 724-739, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34396840

RESUMO

The global rise in antimicrobial resistance and lack of discovery of new antimicrobials have created serious concerns. Targeting quorum sensing (QS) and biofilms of pathogenic bacteria is considered a promising approach in antimicrobial drug discovery. This study explored the inhibitory effect of plumbagin against biofilms and QS of Chromobacterium violaceum, Serratia marcescens and Pseudomonas aeruginosa. Violacein production in C. violaceum 12472 was reduced by >80%. The virulent traits of P. aeruginosa PAO1 such as pyocyanin, rhamnolipid and proteases were also inhibited at sub-minimum inhibitory concentrations. Moreover, the biofilms of the test bacteria were reduced by 56-70%. Plumbagin reduced the bacterial adherence and colonization on solid surface. Computational studies gave closer insights regarding the possible modes of action. Molecular dynamics simulations revealed that the protein complexes were quite stable under physiological conditions. This study provides both experimental and computational evidence regarding the efficacy of plumbagin against biofilms and the QS-controlled virulence factors of Gram-negative bacteria.


Assuntos
Chromobacterium , Percepção de Quorum , Antibacterianos/farmacologia , Biofilmes , Simulação por Computador , Bactérias Gram-Negativas , Naftoquinonas , Pseudomonas aeruginosa , Virulência , Fatores de Virulência
7.
Ecotoxicol Environ Saf ; 213: 112020, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33592373

RESUMO

The contribution of nanoparticles (NPs) in physiology of the plants became the new area of interest for the physiologists; as it is very much cost effective compared to the phytohormones. Our present investigation was also based on this interest in which the same doses (50 mg/L) of four different NPs were sprayed on stressed and non-stressed foliage. The experiment was conducted to assess the impact of four NPs viz., zinc oxide (ZnO), silicon dioxide (SiO2), titanium dioxide (TiO2), and ferric oxide (Fe2O3) on the morphology and physiology of linseed in the presence of sodium chloride (NaCl). Plants responded positively to all the treated NPs and improved the growth, carbon and nutrient assimilation, while salt stress increased the content of proline, hydrogen peroxide and superoxide anion. Application of NPs over the stressed plants further increased the antioxidant enzymatic system and other physiochemical reactions. Results indicate that application of NPs increased the growth and physiology of the plant and also increased the salt tolerance capacity of the plant.


Assuntos
Antioxidantes/metabolismo , Linho/fisiologia , Nanopartículas/toxicidade , Peróxido de Hidrogênio/farmacologia , Nanopartículas/química , Oxirredução , Fotossíntese/efeitos dos fármacos , Prolina/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal , Dióxido de Silício/toxicidade , Titânio , Óxido de Zinco
8.
Molecules ; 26(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34885954

RESUMO

The aim of this study was to explore the composition and evaluate the in silico and in vitro antioxidants and antimicrobial and anti-inflammatory effects of Apium graveolens var. dulce leaves essential oil (AGO) collected from Al-Kharj (Saudi Arabia). AGO was isolated using the hydro-distillation method, and its composition was studied using gas-chromatography-mass Spectrometry (GC-MS), antimicrobial activities using well diffusion assay, and antioxidant and anti-inflammatory activities using spectrophotometric methods. The pharmacological activities of their major compounds were predicted using PASS (prediction of activity spectra for substances) and drug-likening properties by ADME (absorption, distribution, metabolism, and excretion) through web-based online tools. Isocnidilide (40.1%) was identified as the major constituent of AGO along with ß-Selinene, Senkyunolide A, Phytyl acetate, and 3-Butylphthalide. AGO exhibited a superior antibacterial activity, and the strongest activity was detected against Gram-positive bacteria and Candida albicans. Additionally, it exhibited a weaker antioxidant potential and stronger anti-inflammatory effects. PASS prediction supported the pharmacological finding, whereas ADMET revealed the safety of AGO. The molecular docking of isocnidilide was carried out for antibacterial (DNA gyrase), antioxidant (tyrosinase), and anti-inflammatory (cyclooxygenase-2) activities. The docking simulation results were involved hydrophilic interactions and demonstrated high binding affinity of isocnidilide for anti-inflammatory protein (cycloxygenase-2). The presence of isocnidilide makes AGO a potential anti-inflammatory and antimicrobial agent. AGO, and its major metabolite isocnidilide, may be a suitable candidate for the future drug development.


Assuntos
Anti-Infecciosos/química , Anti-Inflamatórios/química , Antioxidantes/química , Apium/química , Óleos Voláteis/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Humanos , Simulação de Acoplamento Molecular , Óleos Voláteis/farmacologia , Folhas de Planta/química , Arábia Saudita
9.
Molecules ; 26(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34946505

RESUMO

The study's purpose was to find and create a nourishing fruit juice made from avocado to suit nutritional and health demands. In this regard, the avocado juice was formulated using a statistical technique, and its biochemical and phytochemical characteristics were evaluated. Statistically formulated fruit juice was evaluated for its sensory characteristics, proximate composition, nutrients and vitamins, total phenols and flavonoids, and for its antioxidant ability, in addition to a shelf-life test. The optimal amount of all ingredients included in the mathematical model for the preparation of the juice was 150 g of Persea americana (Avocado) fruit pulp, 12.5 g of honey and 100 mL of water. In fact, the composition of avocado juice was found to have higher phenolic (910.36 ± 0.215 mg EAG g-1/mL) and flavonoid (56.32 ± 1.26 mg QE g-1/ mL) amounts. DPPH, ABTS and FRAP antioxidant assays tended to be high compared with a standard. The shelf-life analysis indicated that the processed avocado juice (V7) had a long shelf life. In view of all these merits, a statistically formulated recipe for avocado fruit juice was recommended for the formulation of the most preferred health drink.


Assuntos
Antioxidantes/farmacologia , Flavonoides/farmacologia , Sucos de Frutas e Vegetais/análise , Persea/química , Fenóis/farmacologia , Compostos Fitoquímicos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Composição de Medicamentos , Flavonoides/química , Flavonoides/isolamento & purificação , Recuperação de Fluorescência Após Fotodegradação , Humanos , Fenóis/química , Fenóis/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores , Ácidos Sulfônicos/antagonistas & inibidores
10.
Physiol Mol Biol Plants ; 26(12): 2503-2520, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424161

RESUMO

Auxins (Aux) are primary growth regulators that regulate almost every aspect of growth and development in plants. It plays a vital role in various plant processes besides controlling the key aspects of cell division, cell expansion, and cell differentiation. Considering the significance of Aux, and its potential applications, a study was conducted to observe the impact of indole acetic acid (IAA), a most active and abundant form of Aux on Brassica juncea plants growing under natural environmental conditions. Different concentrations (0, 10-10, 10-8, 10-6 M) of IAA were applied once in a day at 25-day stage of growth for 5 days, consecutively. Various parameters (growth, photosynthetic, biochemical, oxidative biomarkers and nutrient composition) were assessed at different days after sowing (DAS). Scanning electron microscopy (SEM) of leaf stomata, reactive oxygen species (ROS) localization in leaf and roots, and confocal microscopy were also conducted. The results revealed that all the IAA concentrations were effective in growth promotion and ROS reduction, however, the 10-8 M of IAA exhibited the maximum improvement in all the above mentioned parameters as compared to the control.

11.
BMC Plant Biol ; 18(1): 146, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012086

RESUMO

BACKGROUND: This study assessed the effects of 24-epibrassinolide (EBL, 10-7M) and silicon (2 mM) on the alleviation of cadmium (Cd, 150 mg L-1) toxicity in Pisum sativum L. seedlings via the modulation of growth, antioxidant defense, glyoxalase system, and nutrient uptake. RESULTS: Shoot and root lengths declined by 46.43% and 52.78%, respectively, following Cd stress. Shoot and root dry weights also declined with Cd toxicity. Biochemical and physiological aspects exhibit significant decline including total chlorophyll (33.09%), carotenoid (51.51%), photosynthetic efficiency (32.60%), photochemical quenching (19.04%), leaf relative water content (40.18%), and gas exchange parameters (80.65%). However, EBL or Si supplementation alone or in combination modulates the previously mentioned parameters. Cadmium stress increased proline and glycine betaine (GB) contents by 4.37 and 2.41-fold, respectively. Exposure of plants to Cd stress increased the accumulation of H2O2, malondialdehyde content, electrolyte leakage, and methylglyoxal, which declined significantly with EBL and Si supplementation, both individually and in combination. Similarly, Cd stress adversely affected enzymatic and non-enzymatic antioxidants, but EBL and/or Si supplementation maintained antioxidant levels. Glyoxalase I (GlyI) accumulated after Cd stress and increased further with the application of EBL and Si. However, GlyII content declined after Cd stress but increased with supplementation of EBL and Si. Cadmium accumulation occurred in the following order: roots > shoots>leaves. Supplementation with EBL and Si, individually and in combination reduced Cd accumulation and enhanced the uptake of macronutrients and micronutrients in shoots and roots, which declined with Cd toxicity. CONCLUSION: The application of 24-EBL and Si, individually and in combination, alleviated the adverse effects of Cd by improving growth, biochemical parameters, nutrient uptake, osmolyte accumulation, and the anti-oxidative defense and glyoxalase systems in Pisum sativum seedlings.


Assuntos
Antioxidantes/metabolismo , Brassinosteroides/farmacologia , Cádmio/toxicidade , Lactoilglutationa Liase/metabolismo , Nutrientes/metabolismo , Pisum sativum/efeitos dos fármacos , Plântula/efeitos dos fármacos , Silício/farmacologia , Esteroides Heterocíclicos/farmacologia , Tioléster Hidrolases/metabolismo , Betaína/metabolismo , Clorofila/metabolismo , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Folhas de Planta/metabolismo , Prolina/metabolismo , Aldeído Pirúvico/metabolismo , Plântula/metabolismo , Plântula/fisiologia
12.
Saudi J Biol Sci ; 31(4): 103959, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404540

RESUMO

Cucumber is an essential vegetable crop throughout the world. Cucumber development is vital for accomplishing both quality and productivity requirements. Meanwhile, numerous factors have resulted in substantial cucumber losses. However, the calreticulin domain-encoding genes (CDEGs) in cucumber were not well-characterized and had little function. In the genome-wide association study (GWAS), we recognized and characterized the CDEGs in Cucumis sativus (cucumber). Through a comprehensive study of C. sativus, our research has unveiled the presence of three unique genes, denoted as CsCRTb, CsCRT3, and CsCNX1, unevenly distributed on three chromosomes in the genome of C. sativus. In accordance to the phylogenetic investigation, these genes may be categorized into three subfamilies. Based on the resemblance with AtCDE genes, we reorganized the all CsCDE genes in accordance with international nomenclature. The expression analysis and cis-acting components revealed that each of CsCDE gene promoter region enclosed number of cis-elements connected with hormone and stress response. According to subcellular localization studies demonstrated that, they were found in deferent locations of the cell such as endoplasmic reticulum, plasma membrane, golgi apparatus, and vacuole, according to subcellular localization studies. Chromosomal distribution analysis and synteny analysis demonstrated the probability of segmental or tandem duplications within the cucumber CDEG gene family. Additionally, miRNAs displayed diverse modes of action, including mRNA cleavage and translational inhibition. We used the RNA seq data to analyze the expression of CDEG genes in response to cold stress and also improved cold tolerance, which was brought on by treating cucumber plants to an exogenous chitosan oligosaccharide spray. Our investigation revealed that these genes responded to this stress in a variety of ways, demonstrating that they may adapt quickly to environmental changes in cucumber plants. This study provides a base for further understanding in reference to CDE gene family and reveals that genes play significant functions in cucumber stress responses.

13.
Protoplasma ; 261(1): 125-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37550558

RESUMO

Quercetin is a bioactive natural compound with an antioxidative property that can potentially modify plant physiology. The current investigation aimed to gauge the effect of different concentrations of foliar spray of quercetin (0, 0.5, 1, 1.5, 2.0 mM) on several morphological and physio-biochemical performances of Abelmoschus esculentus L. (Moench.) plants under normal environmental conditions. The foliar spray on the plant leaves was applied 25 days after sowing (DAS) and continued up to 30 DAS once each day. The plants were sampled at 30 and 45 DAS to monitor several parameters. The foliar treatments of quercetin significantly upgraded all the studied parameters. The results direct that most of the traits such as growth, nutrient uptake, photosynthetic, and enzyme activities were promoted in a dose-dependent way. Quercetin application lowered the reactive oxygen species (ROS) buildup by increasing the antioxidant enzyme activities. Microscopic investigations further revealed a significant enhancement in the stomatal aperture under quercetin application. Out of several doses tested, 1 mM of quercetin proved best and can be used for further investigations.


Assuntos
Abelmoschus , Quercetina , Quercetina/farmacologia , Quercetina/metabolismo , Abelmoschus/química , Abelmoschus/metabolismo , Antioxidantes/metabolismo , Açúcares/metabolismo , Oxirredução
14.
Food Res Int ; 187: 114390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763652

RESUMO

In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.


Assuntos
Antibacterianos , Embalagem de Alimentos , Conservação de Alimentos , Polilisina , Polilisina/química , Embalagem de Alimentos/métodos , Biopolímeros/química , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Filmes Comestíveis
15.
Plant Physiol Biochem ; 206: 108222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016371

RESUMO

Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.


Assuntos
Prunus avium , Prunus avium/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Cianeto de Hidrogênio/metabolismo , Flores/genética , Proteínas de Plantas/genética , Nanopartículas Magnéticas de Óxido de Ferro , Regulação da Expressão Gênica de Plantas , Dormência de Plantas
16.
BMC Genom Data ; 25(1): 71, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030545

RESUMO

The coffee industry holds importance, providing livelihoods for millions of farmers globally and playing a vital role in the economies of coffee-producing countries. Environmental conditions such as drought and temperature fluctuations can adversely affect the quality and yield of coffee crops.Carotenoid cleavage oxygenases (CCO) enzymes are essential for coffee plants as they help break down carotenoids contributing to growth and stress resistance. However, knowledge about the CCO gene family in Coffee arabica was limited. In this study identified 21 CCO genes in Coffee arabica (C. arabica) revealing two subfamilies carotenoid cleavage dioxygenases (CCDs) and 9-cis-epoxy carotenoid dioxygenases (NCED) through phylogenic analysis. These subfamilies exhibited distribution patterns in terms of gene structure, domains, and motifs. The 21 CaCCO genes, comprising 5 NCED and 16 CCD genes were found across chromosomes. Promoter sequencing analysis revealed cis-elements that likely interact with plant stress-responsive, growth-related, and phytohormones, like auxin and abscisic acid. A comprehensive genome-wide comparison, between C. arabica and A. thaliana was conducted to understand the characteristics of CCO genes. RTqPCR data indicated that CaNCED5, CaNCED6, CaNCED12, and CaNCED20 are target genes involved in the growth of drought coffee plants leading to increased crop yield, in a conditions, with limited water availability. This reveals the role of coffee CCOs in responding to abiotic stress and identifies potential genes useful for breeding stress-resistant coffee varieties.


Assuntos
Coffea , Oxigenases , Filogenia , Estresse Fisiológico , Estresse Fisiológico/genética , Oxigenases/genética , Oxigenases/metabolismo , Coffea/genética , Família Multigênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Genoma de Planta/genética , Café/genética , Regiões Promotoras Genéticas/genética , Carotenoides/metabolismo , Estudo de Associação Genômica Ampla
17.
Front Plant Sci ; 15: 1333286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606070

RESUMO

Citrus fruits, revered for their nutritional value, face significant threats from diseases like citrus canker, particularly impacting global citrus cultivation, notably in Pakistan. This study delves into the critical role of NPR1-like genes, the true receptors for salicylic acid (SA), in the defense mechanisms of citrus against Xanthomonas axonopodis pv. citri (Xcc). By conducting a comprehensive genome-wide analysis and phylogenetic study, the evolutionary dynamics of Citrus limon genes across diverse citrus cultivars are elucidated. Structural predictions unveil conserved domains, such as the BTB domain and ankyrin repeat domains, crucial for the defense mechanism. Motif analysis reveals essential conserved patterns, while cis-regulatory elements indicate their involvement in transcription, growth, response to phytohormones, and stress. The predominantly cytoplasmic and nuclear localization of NPR1-like genes underscores their pivotal role in conferring resistance to various citrus species. Analysis of the Ks/Ka ratio indicates a purifying selection of NPR1-like genes, emphasizing their importance in different species. Synteny and chromosomal mapping provide insights into duplication events and orthologous links among citrus species. Notably, Xac infection stimulates the expression of NPR1-like genes, revealing their responsiveness to pathogenic challenges. Interestingly, qRT-PCR profiling post-Xac infection reveals cultivar-specific alterations in expression within susceptible and resistant citrus varieties. Beyond genetic factors, physiological parameters like peroxidase, total soluble protein, and secondary metabolites respond to SA-dependent PR genes, influencing plant characteristics. Examining the impact of defense genes (NPR1) and plant characteristics on disease resistance in citrus, this study marks the inaugural investigation into the correlation between NPR1-associated genes and various plant traits in both susceptible and resistant citrus varieties to citrus bacterial canker.

18.
Front Genet ; 14: 1329339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38390455

RESUMO

Leishmaniasis, a parasitic disease caused by different species of the protozoa parasite Leishmania, is a neglected tropical human disease that is endemic in about a hundred countries worldwide. According to the World Health Organization (WHO), the annual incidence of cutaneous leishmaniasis (CL) is estimated to be 0.7-1.2 million cases globally, whereas the annual incidence of visceral leishmaniasis is estimated to be 0.2-0.4 million cases. In many eukaryotic organisms, including human beings and protozoan parasites, centrin genes encode proteins that play essential roles within the centrosome or basal body. Human microRNAs (miRNAs) have been linked to several infectious and non-infectious diseases associated with pathogen-host interactions, and they play the emphatic roles as gene expression regulators. In this study, we used the MirTarget bioinformatics tool, which is a machine learning-based approach implemented in miRDB, to predict the target of human miRNAs in Leishmania donovani centrin genes. For cross-validation, we utilized additional prediction algorithms, namely, RNA22 and RNAhybrid, targeting all five centrin isotypes. The centrin-3 (LDBPK_342160) and putative centrin-5 (NC_018236.1) genes in L. donovani were targeted by eight and twelve human miRNAs, respectively, among 2,635 known miRNAs (miRBase). hsa-miR-5193 consistently targeted both genes. Using TargetScan, TarBase, miRecords, and miRTarBase, we identified miRNA targets and off-targets in human homologs of centrin, inflammation, and immune-responsive genes. Significant targets were screened based on GO terminologies and KEGG pathway-enrichment analysis (Log10 p-value >0.0001). In silico tools that predict the biological roles of human miRNAs as primary gene regulators in pathogen-host interactions help unravel the regulatory patterns of these miRNAs, particularly in the early stages of inflammatory responses. It is also noted that these miRNAs played an important role in the late phase of adaptive immune response, inclusively their impacts on the immune system's response to L. donovani.

19.
J Biomol Struct Dyn ; 41(21): 12305-12327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752331

RESUMO

Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , RNA Viral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia
20.
Plant Physiol Biochem ; 194: 651-663, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563571

RESUMO

The participation of nitric oxide (NO) in wheat plant tolerance to salinity stress (SS) brought about by hydrogen sulphide (H2S) via modifying the ascorbate-glutathione (AsA-GSH) cycle was studied. The SS-plants received either 0.2 mM sodium hydrosulfide (NaHS; H2S donor), or NaHS plus 0.1 mM sodium nitroprusside (SNP; a NO donor) through the nutrient solution. Salinity stress decreased plant growth, leaf water status, leaf K+, and glyoxalase II (gly II), while it elevated proline content, leaf Na+ content, oxidative stress, methylglyoxal (MG), glyoxalase I (gly I), the superoxide dismutase, catalase and peroxidase activities, contents of endogenous NO and H2S. The NaHS supplementation elevated plant development, decreased leaf Na+ content and oxidative stress, and altered leaf water status, leaf K+ and involved enzymes in AsA-GSH, H2S and NO levels. The SNP supplementation boosted the positive impact of NaHS on these traits in the SS-plants. Moreover, 0.1 mM cPTIO, scavenger of NO, countered the beneficial effect of NaHS by lowering NO levels. SNP and NaHS + cPTIO together restored the beneficial effects of NaHS by increasing NO content, implying that NO may have been a major factor in SS tolerance in wheat plants induced by H2S via activating enzymes connected to the AsA-GSH cycle.


Assuntos
Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Óxido Nítrico/farmacologia , Triticum/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Estresse Salino , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA