Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(3): 1716-1723, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29265133

RESUMO

Glycerol-water mixtures were studied at molar concentrations ranging from xgly = 1 (neat glycerol) to xgly = 0.3 using shear mechanical spectroscopy. We observed a low frequency mode in neat glycerol, similar to what has been reported for monohydroxy alcohols. This mode has no dielectric counterpart and disappears with increased water concentration. We propose that the hydrogen-bonded network formed between glycerol molecules is responsible for the observed slow mode and that water acts as a plasticizer for the overall dynamics and as a lubricant softening the hydrogen-bonding contribution to the macroscopic viscosity of this binary system.

2.
J Chem Phys ; 145(15): 154901, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27782469

RESUMO

Many polymers exhibit much steeper temperature dependence of their structural relaxation time (higher fragility) than liquids of small molecules, and the mechanism of this unusually high fragility in polymers remains a puzzle. To reveal additional hints for understanding the underlying mechanism, we analyzed correlation of many properties of polymers to their fragility on example of model polymer polystyrene with various molecular weights (MWs). We demonstrate that these correlations work for short chains (oligomers), but fail progressively with increase in MW. Our surprising discovery is that the steepness of the temperature dependence (fragility) of the viscosity that is determined by chain relaxation follows the correlations at all molecular weights. These results suggest that the molecular level relaxation still follows the behavior usual for small molecules even in polymers, and its fragility (chain fragility) falls in the range usual for molecular liquids. It is the segmental relaxation that has this unusually high fragility. We speculate that many polymers cannot reach an ergodic state on the time scale of segmental dynamics due to chain connectivity and rigidity. This leads to sharper decrease in accessible configurational entropy upon cooling and results in steeper temperature dependence of segmental relaxation. The proposed scenario provides a new important insight into the specifics of polymer dynamics: the role of ergodicity time and length scale. At the end, we suggest that a similar scenario can be applicable also to other molecular systems with slow intra-molecular degrees of freedom and to chemically complex systems where the time scale of chemical fluctuations can be longer than the time scale of structural relaxation.

3.
J Chem Phys ; 143(13): 134501, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450317

RESUMO

Isothermal crystallization of the mono-hydroxyl alcohol n-butanol was studied with dielectric spectroscopy in real time. The crystallization was carried out using two different sample cells at 15 temperatures between 120 K and 134 K. Crystallization is characterized by a decrease of the dielectric intensity. In addition, a shift in relaxation times to shorter times was observed during the crystallization process for all studied temperatures. The two different sample environments induced quite different crystallization behaviors, consistent and reproducible over all studied temperatures. An explanation for the difference was proposed on the background of an Avrami analysis and a Maxwell-Wagner analysis. Both types of analysis suggest that the morphology of the crystal growth changes from a higher dimension to a lower at a point during the crystallization. More generally, we conclude that a microscopic interpretation of crystallization measurements requires multiple probes, sample cells, and protocols.

4.
Phys Rev Lett ; 103(18): 185702, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905814

RESUMO

By taking advantage of the molecular weight dependence of the glass transition of polymers and their ability to form perfectly miscible blends, we propose a way to modify the fragility of a system, from fragile to strong, keeping the same glass properties, i.e., vibrational density of states, mean-square displacement, and local structure. Both slow and fast dynamics are investigated by calorimetry and neutron scattering in an athermal polystyrene-oligomer blend, and compared to those of a pure 17-mer polystyrene considered to be a reference, of the same Tg. Whereas the blend and the pure 17-mer have the same heat capacity in the glass and in the liquid, their fragilities differ strongly. Thus, the difference in fragility is related to an extra configurational entropy created by the mixing process and acting at a scale much larger than the interchain distance, without affecting the fast dynamics and the structure of the glass.

5.
Phys Rev Lett ; 99(5): 055502, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17930767

RESUMO

We study the changes in the low-frequency vibrational dynamics of poly(isobutylene) under pressure up to 1.4 GPa, corresponding to a density change of 20%. Combining inelastic neutron, x-ray, and Brillouin light scattering, we analyze the variations in the boson peak, transverse and longitudinal sound velocities, and the Debye level under pressure. We find that the boson peak variation under pressure cannot be explained by the elastic continuum transformation only. Surprisingly, the shape of the boson peak remains unchanged even at such high compression.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(4 Pt 1): 041510, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17994997

RESUMO

We use recently introduced three-point dynamic susceptibilities to obtain an experimental determination of the temperature evolution of the number of molecules Ncorr that are dynamically correlated during the structural relaxation of supercooled liquids. We first discuss in detail the physical content of three-point functions that relate the sensitivity of the averaged two-time dynamics to external control parameters (such as temperature or density), as well as their connection to the more standard four-point dynamic susceptibility associated with dynamical heterogeneities. We then demonstrate that these functions can be experimentally determined with good precision. We gather available data to obtain the temperature dependence of Ncorr for a large number of supercooled liquids over a wide range of relaxation time scales from the glass transition up to the onset of slow dynamics. We find that Ncorr systematically grows when approaching the glass transition. It does so in a modest manner close to the glass transition, which is consistent with an activation-based picture of the dynamics in glassforming materials. For higher temperatures, there appears to be a regime where Ncorr behaves as a power-law of the relaxation time. Finally, we find that the dynamic response to density, while being smaller than the dynamic response to temperature, behaves similarly, in agreement with theoretical expectations.

7.
J Phys Condens Matter ; 18(6): R15-68, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21697556

RESUMO

We present a review of experimental, theoretical, and molecular simulation studies of confinement effects on freezing and melting. We consider both simple and more complex adsorbates that are confined in various environments (slit or cylindrical pores and also disordered porous materials). The most commonly used molecular simulation, theoretical and experimental methods are first presented. We also provide a brief description of the most widely used porous materials. The current state of knowledge on the effects of confinement on structure and freezing temperature, and the appearance of new surface-driven and confinement-driven phases are then discussed. We also address how confinement affects the glass transition.

8.
Eur Phys J E Soft Matter ; 12 Suppl 1: S43-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15011013

RESUMO

We present a neutron scattering investigation on methyl group dynamics in glassy toluene confined in mesoporous silicates of different pore sizes. The experimental results have been analysed in terms of a barrier distribution model, such a distribution following from the structural disorder in the glassy state. Confinement results in a strong decreasing of the average rotational barrier in comparison to the bulk state. We have roughly separated the distribution for the confined state in a bulk-like and a surface-like contribution, corresponding to rotors at a distance from the pore wall respectively larger and smaller than the spatial range of the interactions which contribute to the rotational potential for the methyl groups. We have estimated a distance of 7 A as a lower limit of the interaction range, beyond the typical nearest-neighbour distance between centers-of-mass (4.7 A).

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(1 Pt 1): 010802, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12636483

RESUMO

This communication presents a determination of the glass transition of polybutadiene under very high pressure, and raises the problem of the determination of the relative effects of temperature and density on the glass transition, depending on the pressure and temperature conditions. Local structure and slow dynamics were studied, by neutron scattering and calorimetry. To the best of our knowledge in neutron diffraction on soft matter such a high pressure, up to 4 GPa, was achieved.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 1): 051801, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12786169

RESUMO

We investigate the influence of temperature and density on the local structure and the dynamics of polybutadiene by controlling both hydrostatic pressure and temperature in polarized neutron diffraction experiments on deuterated polybutadiene and in inelastic incoherent scattering experiments on protonated polybutadiene. We observe that the static structure factor S(Q) does not change along macroscopic isochores. This behavior is contrary to the relaxations observed on the nanosecond and picosecond time scales and viewed by the dynamic incoherent scattering law S(Q,omega), which differ strongly along the same thermodynamic path. We conclude that the static behavior, i.e., S(Q), is dominated by macroscopic density changes, similar to the vibrational excitations in the meV range. However, the relaxation dynamics is more sensitive to thermal energy changes. This is confirmed by the finding that lines of identical relaxation behavior (in time, shape, and Q dependence), isochrones on the 10(-9) sec time scale, clearly cross the constant density lines in the (P,T) plane. Concerning S(Q), we can reasonably relate the variation of the main-peak position to the average neighbor chain distance and deduce crude microscopic thermal expansion and compressibility coefficients. In the low-Q regime, the observed pressure and temperature variation of S(Q) exceeds the compressibility contribution and suggests the existence of additional scattering, which might originate from structural correlations arising at higher temperature and low pressure.

11.
J Phys Chem B ; 117(33): 9718-27, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23937163

RESUMO

We present a detailed analysis of the mixing process in an associating system, the water-tert-butanol (2-methyl-2-propanol) mixture. Using molecular dynamics simulations, together with neutron, X-ray diffraction experiments, and pulsed gradient spin-echo NMR, we study the local structure and dynamic properties over the full concentration range, and thereby provide quantitative data that reveal relationships between local structure and macroscopic behavior. For an alcohol-rich mixture, diffraction patterns from both neutron and X-ray experiments exhibit a peak at low wavelength vector (q ≈ 0.7 Å(-1)) characteristic of supermolecular structures. On increasing the water content, this "prepeak" progressively flattens and shifts to low wave vector . We identify hydrogen bonds in the system as the driving force for the specific organization that appears in mixtures, and provide an analysis of the variation of the cluster size distribution with composition. We find that the sizes of local hydrogen-bonded clusters observed in alcohol-rich mixtures become larger as the mole fraction, x(w), of water is increased; a nanophase separation is seen for x(w) in the range 0.6-0.7. This corresponds to several changes in some macroscopic properties of the liquid mixture. Thus, we propose a microscopic description of the effect of water addition in alcohol, which is in agreement with both neutron diffraction pattern and mobility of water and alcohol species. In summary we present a full and comprehensive description of miscibility at its limit in an associated system.

12.
J Phys Chem B ; 117(35): 10221-30, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23977950

RESUMO

The present study reveals that the fully miscible binary mixtures consisting of tert-butanol with aprotic solvents form well-defined ordered supermolecular structures, which have been characterized on different length scales. Three different types of microstructures have been determined. They are separated by distinct crossovers that appear as a function of the dilution rate, going from "correlated clusters" to "diluted clusters" and "diluted monomer" microstructures. These observations have been made possible by the combination of Raman vibration spectroscopy, (1)H NMR, and neutron diffraction that probe, respectively, the cluster formation (self-association) and the intercluster correlations (cluster segregation). The solvation effects on both the cluster formation and the intercluster correlations have been assessed by tuning the alcohol-solvent interaction, i.e., changing the chemical nature of the diluting solvent from a purely inert alkane to a weakly interacting aromatic system.

13.
J Chem Phys ; 120(13): 6135-41, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267499

RESUMO

We present a consistent picture of the respective role of density (rho) and temperature (T) in the viscous slowing down of glassforming liquids and polymers. Specifically, based in part upon a new analysis of simulation and experimental data on liquid ortho-terphenyl, we conclude that a zeroth-order description of the approach to the glass transition (in the range of experimentally accessible pressures) should be formulated in terms of a temperature-driven super-Arrhenius activated behavior rather than a density-driven congestion or jamming phenomenon. The density plays a role at a quantitative level, but its effect on the viscosity and the alpha-relaxation time can be simply described via a single parameter, an effective interaction energy that is characteristic of the high-T liquid regime; as a result, rho does not affect the "fragility" of the glassforming system.

14.
Eur Phys J E Soft Matter ; 12(1): 19-28, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15007675

RESUMO

We relate the dynamical behavior of molecular liquids confined in mesoscopic cylindrical pores to the thermodynamic properties, heat capacity and density and to the static structure by combining different experimental methods (H-NMR, calorimetry, elastic and inelastic neutron scattering, numerical simulations). The crystallization process is greatly reduced or avoided by confinement under standard cooling conditions, instead a glass transition temperature T(g) at the 1000s time scale can be observed. The pore averaged local structure of the confined liquid is not noticeably affected when "excluded-volume" corrections are carefully applied, but follows the density changes reflected by the Bragg peak intensities of the porous matrices. The pore size dependence of T(g) is dominated by two factors, surface interaction and finite-size effect. For the smallest pores ([Formula: see text], [Formula: see text] being the van der Waals radius of a molecule), one observes an increase of T(g) and a broadening of the transition region, related to the interaction with the surface that induces a slowing-down of the molecules close to the wall. This is confirmed by neutron scattering experiments and molecular-dynamics simulations at shorter time scales and higher temperatures, which indicate a remaining fraction of frozen molecules. For larger pore sizes, taking the decrease of density under confinement conditions into account, a decrease of T(g) is observed. This could be related to finite-size effects onto the putative cooperativity length that is often invoked to explain glass formation. However, no quantitative determination of this length (not to mention its T-dependence) can be extracted, since the interaction with the wall itself introduces an additional length that adds to the complexity of the problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA