Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 408(13): 3625-31, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26968565

RESUMO

AFM tips are modified with silver nanoparticles using an AC electrical field. The used technique works with sub-micron precision and also does not require chemical modification of the tip. Based on the electrical parameters applied in the process, particle density and particle position on the apex of the tip can be adjusted. The feasibility of the method is proven by subsequent tip-enhanced Raman spectroscopy (TERS) measurements using the fabricated tips as a measurement probe. Since this modification process itself does not require any lithographic processing, the technique can be easily adapted to modify AFM tips with a variety of nanostructures with pre-defined properties, while being parallelizable for a potential commercial application.

2.
Anal Bioanal Chem ; 405(8): 2743-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23371531

RESUMO

Three important technical innovations are reported here towards Raman-activated cell sorting. Firstly, a microfluidic chip made of quartz is introduced which integrates injection of single cells, trapping by laser fibres and sorting of cells. Secondly, a chip holder was designed to provide simple, accurate and stable adjustment of chips, microfluidic connections and the trapping laser fibres. The new setup enables to the collection of Raman spectra of single cells at 785 nm excitation with 10 s exposure time. Lastly, a new type of modelling the various background contributions is described, improving Raman-based cell identification by the classification algorithm linear discriminant analysis. Mean sensitivity and specificity determined by iterated 10-fold cross validation were 96 and 99 %, respectively, for the distinction of leucocytes extracted from blood, breast cancer cells BT-20 and MCF-7, and leukaemia cells OCI-AML3.


Assuntos
Células/química , Microfluídica/métodos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Microfluídica/instrumentação , Pinças Ópticas , Quartzo , Análise Espectral Raman/instrumentação
3.
Lab Chip ; 13(6): 1109-13, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23344502

RESUMO

An all-fibre based Raman-on-chip setup is introduced which enables analysis of solutions and trapped particles without microscopes or objectives. Beside the novel quartz microfluidic chip, innovative multi-core single-mode fibres with integrated fibre Bragg gratings are used for detection. The limit of quantitation is 7.5 mM for urea and 2.5 mM for nicotine with linear Raman spectroscopy. This is an improvement of more than two orders of magnitude compared with previous fibre-based microfluidic Raman detection schemes. Furthermore, our device was combined with optical traps to collect Raman-on-chip spectra of spherical polymer beads.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Nicotina/análise , Análise Espectral Raman , Ureia/análise , Calibragem , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/normas , Nicotina/normas , Soluções/química , Ureia/normas
5.
Lab Chip ; 11(8): 1484-90, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21340095

RESUMO

Raman spectroscopy has been recognized to be a powerful tool for label-free discrimination of cells. Sampling methods are under development to utilize the unique capabilities to identify cells in body fluids such as saliva, urine or blood. The current study applied optical traps in combination with Raman spectroscopy to acquire spectra of single cells in microfluidic glass channels. Optical traps were realized by two 1070 nm single mode fibre lasers. Microflows were controlled by a syringe pump system. A novel microfluidic glass chip was designed to inject single cells, modify the flow speed, accommodate the laser fibres and sort cells after Raman based identification. Whereas the integrated microchip setup used 514 nm for excitation of Raman spectra, a quartz capillary setup excited spectra with 785 nm laser wavelength. Classification models were trained using linear discriminant analysis to differentiate erythrocytes, leukocytes, acute myeloid leukaemia cells (OCI-AML3), and breast tumour cells BT-20 and MCF-7 with accuracies that are comparable with previous Raman experiments of dried cells and fixed cells in a Petri dish. Implementation into microfluidic environments enables a high degree of automation that is required to improve the throughput of the approach for Raman activated cell sorting.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Pinças Ópticas , Análise Espectral Raman/instrumentação , Linhagem Celular Tumoral , Vidro/química , Humanos , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA