Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 23(1): 25, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983389

RESUMO

BACKGROUND: In the nematode Caenorhabditis elegans, longevity in response to germline ablation, but not in response to reduced insulin/IGF1-like signaling, is strongly dependent on the conserved protein kinase minibrain-related kinase 1 (MBK-1). In humans, the MBK-1 ortholog DYRK1A is associated with a variety of disorders, most prominently with neurological defects observed in Down syndrome. To better understand mbk-1's physiological roles and their dependence on genetic background, we analyzed the influence of mbk-1 loss on the transcriptomes of wildtype and long-lived, germline-deficient or insulin-receptor defective, C. elegans strains by RNA-sequencing. RESULTS: mbk-1 loss elicited global changes in transcription that were less pronounced in insulin-receptor mutant than in germline-deficient or wildtype C. elegans. Irrespective of genetic background, mbk-1 regulated genes were enriched for functions in biological processes related to organic acid metabolism and pathogen defense. qPCR-studies confirmed mbk-1 dependent induction of all three C. elegans Δ9-fatty acid desaturases, fat-5, fat-6 and fat-7, in wildtype, germline-deficient and insulin-receptor mutant strains. Conversely, mbk-1 dependent expression patterns of selected pathogen resistance genes, including asp-12, dod-24 and drd-50, differed across the genetic backgrounds examined. Finally, cth-1 and cysl-2, two genes which connect pathogen resistance to the metabolism of the gaseous messenger and lifespan regulator hydrogen sulfide (H2S), were commonly suppressed by mbk-1 loss only in wildtype and germline-deficient, but not in insulin-receptor mutant C. elegans. CONCLUSION: Our work reveals previously unknown roles of C. elegans mbk-1 in the regulation of fatty acid desaturase- and H2S metabolic-genes. These roles are only partially dependent on genetic background. Considering the particular importance of fatty acid desaturation and H2S for longevity of germline-deficient C. elegans, we propose that these processes at least in part account for the previous observation that mbk-1 preferentially regulates lifespan in these worms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidade , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ácidos Graxos Dessaturases/genética , Células Germinativas , Longevidade/genética
2.
J Biol Chem ; 290(11): 6755-62, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25575590

RESUMO

Fumarylacetoacetate hydrolase (FAH) domain-containing proteins occur in both prokaryotes and eukaryotes, where they carry out diverse enzymatic reactions, probably related to structural differences in their respective FAH domains; however, the precise relationship between structure of the FAH domain and the associated enzyme function remains elusive. In mammals, three FAH domain-containing proteins, FAHD1, FAHD2A, and FAHD2B, are known; however, their enzymatic function, if any, remains to be demonstrated. In bacteria, oxaloacetate is subject to enzymatic decarboxylation; however, oxaloacetate decarboxylases (ODx) were so far not identified in eukaryotes. Based on molecular modeling and subsequent biochemical investigations, we identified FAHD1 as a eukaryotic ODx enzyme. The results presented here indicate that dedicated oxaloacetate decarboxylases exist in eukaryotes.


Assuntos
Carboxiliases/metabolismo , Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Carboxiliases/química , Carboxiliases/genética , Cristalografia por Raios X , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Humanos , Hidrolases/química , Hidrolases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Ácido Pirúvico/metabolismo , Alinhamento de Sequência
3.
FEBS Lett ; 596(21): 2781-2794, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35962472

RESUMO

The mitochondrial enzyme fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) was identified to be upregulated in breast cancer tissues. Here, we show that FAHD1 is indispensable for the survival of BT-20 cells, representing the basal breast cancer cell type. A lentiviral knock-down of FAHD1 in the breast cancer cell lines MCF-7 and BT-20 results in lower succinate dehydrogenase (complex II) activity. In luminal MCF-7 cells, this leads to reduced proliferation when cultured in medium containing only glutamine as the carbon source. Of note, both cell lines show attenuated protein levels of the enzyme glutaminase (GLS) which activates programmed cell death in BT-20. These findings demonstrate that FAHD1 is crucial for the functionality of complex II in breast cancer cells and acts on glutaminolysis in the mitochondria.


Assuntos
Mitocôndrias , Neoplasias , Mitocôndrias/metabolismo , Glutamina/metabolismo , Hidrolases/metabolismo , Apoptose , Linhagem Celular
4.
Cells ; 10(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440809

RESUMO

Mitochondria play a key role in metabolic transitions involved in the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), but the underlying molecular mechanisms remain largely unexplored. To obtain new insight into the mechanisms of cellular reprogramming, we studied the role of FAH domain-containing protein 1 (FAHD1) in the reprogramming of murine embryonic fibroblasts (MEFs) into iPSCs and their subsequent differentiation into neuronal cells. MEFs from wild type (WT) and Fahd1-knock-out (KO) mice were reprogrammed into iPSCs and characterized for alterations in metabolic parameters and the expression of marker genes indicating mitochondrial biogenesis. Fahd1-KO MEFs showed a higher reprogramming efficiency accompanied by a significant increase in glycolytic activity as compared to WT. We also observed a strong increase of mitochondrial DNA copy number and expression of biogenesis marker genes in Fahd1-KO iPSCs relative to WT. Neuronal differentiation of iPSCs was accompanied by increased expression of mitochondrial biogenesis genes in both WT and Fahd1-KO neurons with higher expression in Fahd1-KO neurons. Together these observations establish a role of FAHD1 as a potential negative regulator of reprogramming and add additional insight into mechanisms by which FAHD1 modulates mitochondrial functions.


Assuntos
Reprogramação Celular , Glicólise/fisiologia , Hidrolases/genética , Animais , Diferenciação Celular , Linhagem Celular , DNA Mitocondrial/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Hidrolases/deficiência , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosforilação Oxidativa
5.
Mech Ageing Dev ; 190: 111284, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574647

RESUMO

Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.


Assuntos
Sinalização do Cálcio/fisiologia , Senescência Celular/fisiologia , Hidrolases/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Biologia Computacional , Humanos
6.
Aging Cell ; 13(6): 1038-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25273919

RESUMO

Methionine restriction (MetR) extends lifespan in animal models including rodents. Using human diploid fibroblasts (HDF), we report here that MetR significantly extends their replicative lifespan, thereby postponing cellular senescence. MetR significantly decreased activity of mitochondrial complex IV and diminished the accumulation of reactive oxygen species. Lifespan extension was accompanied by a significant decrease in the levels of subunits of mitochondrial complex IV, but also complex I, which was due to a decreased translation rate of several mtDNA-encoded subunits. Together, these findings indicate that MetR slows down aging in human cells by modulating mitochondrial protein synthesis and respiratory chain assembly.


Assuntos
Fibroblastos/citologia , Fibroblastos/metabolismo , Metionina/deficiência , Fatores Etários , Animais , Diploide , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Humanos , Metionina/administração & dosagem , Metionina/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia
7.
Aging (Albany NY) ; 4(10): 664-73, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23117410

RESUMO

Availability of methionine is known to modulate the rate of aging in model organisms, best illustrated by the observation that dietary methionine restriction extends the lifespan of rodents. However, the underlying mechanisms are incompletely understood. In eukaryotic cells, methionine can be converted to cysteine through the reverse transsulfuration pathway thereby modulating intracellular methionine availability. Whereas previous results obtained in yeast and fruit flies suggest that alterations in the reverse transsulfuration pathway modulate the rate of aging, it is not known whether this function is conserved in evolution. Here we show that depletion of cystathionine beta synthase (CBS), a rate limiting enzyme in the reverse transsulfuration pathway, induces premature senescence in human endothelial cells. We found that CBS depletion induces mild mitochondrial dysfunction and increases the sensitivity of endothelial cells to homocysteine, a known inducer of endothelial cell senescence and an established risk factor for vascular disease. Our finding that CBS deficiency induces endothelial cell senescencein vitro, involving both mitochondrial dysfunction and increased susceptibility of the cells to homocysteine, suggests a new mechanism linking CBS deficiency to vascular aging and disease.


Assuntos
Senescência Celular , Cistationina beta-Sintase/metabolismo , Células Endoteliais/enzimologia , Envelhecimento/metabolismo , Cistationina beta-Sintase/genética , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA