Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 14(5): e1007384, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29771908

RESUMO

For most eukaryotes, sexual reproduction is a fundamental process that requires meiosis. In turn, meiosis typically depends on a reciprocal exchange of DNA between each pair of homologous chromosomes, known as a crossover (CO), to ensure proper chromosome segregation. The frequency and distribution of COs are regulated by intrinsic and extrinsic environmental factors, but much more is known about the molecular mechanisms governing the former compared to the latter. Here we show that elevated temperature induces meiotic hyper-recombination in Arabidopsis thaliana and we use genetic analysis with mutants in different recombination pathways to demonstrate that the extra COs are derived from the major Type I interference sensitive pathway. We also show that heat-induced COs are not the result of an increase in DNA double-strand breaks and that the hyper-recombinant phenotype is likely specific to thermal stress rather than a more generalized stress response. Taken together, these findings provide initial mechanistic insight into how environmental cues modulate plant meiotic recombination and may also offer practical applications.


Assuntos
Arabidopsis/genética , Troca Genética , Meiose/genética , Temperatura , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Recombinação Homóloga , Mutação , Fenótipo
2.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711710

RESUMO

Cells have complex and beautiful structures that are important for their function, but understanding the molecular mechanisms that produce these structures is a challenging problem due to the gap in size scales between molecular interactions and cellular structures. The giant ciliate Stentor coeruleus is a unicellular model organism whose large size, reproducible structure, and ability to heal wounds and regenerate has historically allowed the formation of structure in a single cell to be addressed using methods of experimental embryology. Such studies have shown that specific cellular structures, such as the oral apparatus, always form in specific regions of the cell, which raises the question: what is the source of positional information within this organism? By analogy with embryonic development, in which localized mRNA is often used to mark position, we asked whether position along the anterior-posterior axis of Stentor might be marked by specific regionalized mRNAs. By physically bisecting cells and conducting half-cell RNA sequencing, we were able to identify sets of messages enriched in either the anterior or posterior half. We repeated this analysis in cells in which a set of longitudinal microtubule bundles running down the whole length of the cell, known as KM-fibers, were disrupted by RNAi of b-tubulin. We found that many messages either lost their regionalized distribution or switched to an opposite distribution, such that anterior-enriched messages in control became posterior-enriched in the RNAi cells, or vice versa. This study indicates that mRNA can be regionalized within a single giant cell and that microtubules may play a role, possibly by serving as tracks for the movement of the messages.

3.
PLoS One ; 17(6): e0270471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749552

RESUMO

Our current understanding of the regulation of gene expression in the early Drosophila melanogaster embryo comes from observations of a few genes at a time, as with in situ hybridizations, or observation of gene expression levels without regards to patterning, as with RNA-sequencing. Single-nucleus RNA-sequencing however, has the potential to provide new insights into the regulation of gene expression for many genes at once while simultaneously retaining information regarding the position of each nucleus prior to dissociation based on patterned gene expression. In order to establish the use of single-nucleus RNA sequencing in Drosophila embryos prior to cellularization, here we look at gene expression in control and insulator protein, dCTCF, maternal null embryos during zygotic genome activation at nuclear cycle 14. We find that early embryonic nuclei can be grouped into distinct clusters according to gene expression. From both virtual and published in situ hybridizations, we also find that these clusters correspond to spatial regions of the embryo. Lastly, we provide a resource of candidate differentially expressed genes that might show local changes in gene expression between control and maternal dCTCF null nuclei with no detectable differential expression in bulk. These results highlight the potential for single-nucleus RNA-sequencing to reveal new insights into the regulation of gene expression in the early Drosophila melanogaster embryo.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , RNA/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA