Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Chem Phys ; 151(4): 044306, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370544

RESUMO

We have measured fragment mass spectra and total destruction cross sections for protonated and deprotonated adenine following collisions with He at center-of-mass energies in the 20-240 eV range. Classical and ab initio molecular dynamics simulations are used to provide detailed information on the fragmentation pathways and suggest a range of alternative routes compared to those reported in earlier studies. These new pathways involve, for instance, losses of HNC molecules from protonated adenine and losses of NH2 or C3H2N2 from deprotonated adenine. The present results may be important to advance the understanding of how biomolecules may be formed and processed in various astrophysical environments.

2.
Phys Chem Chem Phys ; 19(30): 19533-19535, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28744548

RESUMO

The deposition of large amounts of energy in a molecule by XUV/X-ray photon absorption or fast-ion collision, triggers a set of complex ultrafast electronic and nuclear dynamics that allow a deep understanding and control of chemical reactivity. This themed issue showcases the research performed in the understanding, monitoring and control of these processes.

3.
Phys Rev Lett ; 117(7): 073201, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563959

RESUMO

The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

4.
J Phys Chem A ; 120(32): 6451-8, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27467122

RESUMO

Physisorption and storage of molecular hydrogen on single-walled carbon nanotube (SWCNT) of various diameters and chiralities are studied by means of classical molecular dynamics (MD) simulations and a force field validated using DFT-D2 and CCSD(T) calculations. A nonrigid carbon nanotube model is implemented with stretching (C-C) and valence angle potentials (C-C-C) formulated as Morse and Harmonic cosine potentials, respectively. Our results evidence that the standard Lennard-Jones potential fails to describe the H2-H2 binding energies. Therefore, our simulations make use of a potential that contains two-body term with parameters obtained from fitting CCSD(T)/CBS binding energies. From our MD simulations, we have analyzed the interaction energies, radial distribution functions, gravimetric densities (% wt), and the distances of the adsorbed H2 layers to the three zigzag type of nanotubes (5,0), (10,0), and (15,0) at 100 and 300 K.

5.
J Chem Phys ; 145(9): 094302, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608997

RESUMO

The fragmentation of doubly charged gas-phase methionine (HO2CCH(NH2)CH2CH2SCH3) is systematically studied using the self-consistent charge density functional tight-binding molecular dynamics (MD) simulation method. We applied graph theory to analyze the large number of the calculated MD trajectories, which appears to be a highly effective and convenient means of extracting versatile information from the large data. The present theoretical results strongly concur with the earlier studied experimental ones. Essentially, the dication dissociates into acidic group CO2H and basic group C4NSH10. The former may carry a single or no charge and stays intact in most cases, whereas the latter may hold either a single or a double charge and tends to dissociate into smaller fragments. The decay of the basic group is observed to follow the Arrhenius law. The dissociation pathways to CO2H and C4NSH10 and subsequent fragmentations are also supported by ab initio calculations.


Assuntos
Conceitos Matemáticos , Metionina/química , Simulação de Dinâmica Molecular , Estatística como Assunto
6.
J Phys Chem A ; 118(23): 4138-46, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24856824

RESUMO

We present a molecular dynamics (MD) study on the structure of self-assembled monolayers (SAMs) of alkylthiolates on various metal surfaces, with especial attention to Au(111) and Ag(111). Variations in the structure of these SAMs as a function of temperature and alkyl-chain length are systematically investigated. The MD simulations are performed by using a recently developed force field based on second-order Møller-Plesset perturbation theory calculations. Good agreement between the present results and the existing experimental data is found on Au(111). On Ag(111) the comparison between theory and experiment is also satisfactory for alkylthiolates with no more than 14 carbon atoms. The dependences of the average tilt angle of SAMs on temperature and chain length are easily understood by means of a simple single-chain model.

7.
J Phys Chem A ; 118(8): 1374-83, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24517120

RESUMO

The dependence of the fragmentation of doubly charged gas-phase methionine (C5H11NO2S) on the electronic-state character of the parent ion is studied experimentally by energy-resolved electron ion-ion coincidence spectroscopy. The parent dication electronic states are populated by Auger transitions following site-specific sulfur 2p core ionization. Two fragmentation channels are observed to be strongly dependent on the electronic states with vacancies in weakly bound molecular orbitals. All-electron calculations are applied to assign doubly charged final states of sulfur 2p core ionized methionine. In addition, the Car-Parrinello method is applied to model fragmentation dynamics of doubly charged methionine molecules with various initial temperatures to understand the typical characteristics of the molecular dissociation and partly to support the interpretation of experimental data.


Assuntos
Elétrons , Gases/química , Metionina/química , Simulação de Dinâmica Molecular , Eletricidade Estática , Termodinâmica
8.
Phys Rev Lett ; 110(18): 185501, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23683214

RESUMO

We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.


Assuntos
Partículas alfa , Fulerenos/química , Cátions Bivalentes/química , Hélio/química , Modelos Moleculares , Peso Molecular , Método de Monte Carlo , Termodinâmica
9.
J Chem Phys ; 139(3): 034309, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883029

RESUMO

We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) → C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.

10.
J Am Chem Soc ; 134(32): 13224-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22827341

RESUMO

A temperature-induced commensurate solid-solid phase transition in self-assembled monolayers (SAMs) of alkylthiolates lying on Pt(111) is predicted from molecular dynamics simulations based on ab initio potential energy surfaces. As the system cools down from room temperature to low enough temperature, SAMs of alkylthiolates with more than ~12 carbon atoms undergo an abrupt change of orientation from a nearly upright to a tilted configuration. As the initial hexagonal arrangement of the sulfur headgroups is kept fixed during the simulations, the phase transition is entirely governed by chain-chain interactions. Similar commensurate phase transitions are predicted for hexagonally arranged SAMs with lattice spacings of the order of 4.7-4.9 Å, which, among others, excludes the well-known cases of densely packed SAMs of alkylthiolates on Au(111) and Ag(111). These findings could be relevant for the design of novel electronic or optical devices controllable by temperature.

11.
Phys Rev Lett ; 106(18): 186102, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21635104

RESUMO

Elaborate density functional theory (DFT) calculations that include the effect of van der Waals (vdW) interactions have been carried out for graphene epitaxially grown on Ru(0001). The calculations predict a reduction of structural corrugation in the observed moiré pattern of about 25% (∼0.4 Å) with respect to DFT calculations without vdW corrections. The simulated STM topographies are close to the experimental ones in a wide range of bias voltage around the Fermi level.

12.
Phys Rev Lett ; 107(2): 023202, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797602

RESUMO

A combination of time-dependent density functional theory and Born-Oppenheimer molecular dynamics methods is used to investigate fragmentation of doubly charged gas-phase uracil in collisions with 100 keV protons. The results are in good agreement with ion-ion coincidence measurements. Orbitals of similar energy and/or localized in similar bonds lead to very different fragmentation patterns, thus showing the importance of intramolecular chemical environment. In general, the observed fragments do not correspond to the energetically most favorable dissociation path, which is due to dynamical effects occurring in the first few femtoseconds after electron removal.


Assuntos
Elétrons , Gases/química , Simulação de Dinâmica Molecular , Uracila/química , Cinética , Conformação Molecular , Análise Espectral
13.
Phys Chem Chem Phys ; 13(20): 9353-62, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21479318

RESUMO

We compare the stability of various structures of high coverage self-assembled monolayers (SAMs) of short alkylthiolates, S(CH(2))(n-1)CH(3) (= C(n)), on Ag(111) and Au(111). We employ: (i) the ab initio thermodynamics approach based on density functional theory (DFT) calculations, to compare the stability of SAMs of C(1) (with coverages Θ = 3/7 and 1/3) on both substrates, and (ii) a set of pairwise interatomic potentials derived from second-order Møller-Plesset (MP2) perturbation theory calculations, to estimate the role of chain-chain (Ch-Ch) interactions in the structure and stability of SAMs of longer chain alkylthiolates. For C(1)/Ag(111) (C(1)/Au(111)) the SAM with Θ = 3/7 is more (less) stable than for Θ = 1/3 in a wide range of temperatures and pressures in line with experiments. In addition, for the molecular densities of SAMs corresponding to Θ = 3/7 and 1/3, the MP2-based Ch-Ch interaction potential also predicts the different chain orientations observed experimentally in SAMs of alkylthiolates on Ag(111) and Au(111). Thus, for short length alkylthiolates, a simple model based on first principles calculations that separately accounts for molecule-surface (M-S) and Ch-Ch interactions succeeds in predicting the main structural differences between the full coverage SAMs usually observed experimentally on Ag(111) and Au(111).

14.
Phys Chem Chem Phys ; 12(27): 7555-65, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20532333

RESUMO

We have developed a force field to describe the interaction of alkanethiols HS(CH(2))(n-1) CH(3) (C(n) for short) by fitting a set of approximately 220 interaction energies for dimers of C(n) (with n = 1,2,...6) and CH(4) molecules obtained from second-order Møller-Plesset perturbation theory calculations. The derived force field, based on a sum of so-called exp-6 pairwise potentials and effective Coulomb interaction potential between the HS- heads, predicts very well the interaction energies for dimers and trimers of alkanethiols not included in the input database for the fit. Also the calculated minimum energy tilt angle of the alkyl chains for a hexagonal arrangement of alkanethiolates with a nearest neighbor distance of 5 A is in good agreement with the available experimental data for a sqrt [3] x sqrt [3] self-assembled monolayer (SAM) on Au(111). Thus, the derived force field might be suitable for large-scale molecular dynamics and/or Monte Carlo simulations to predict the structure, stability and/or kinetics of SAMs on other surfaces.

15.
Mutat Res ; 704(1-3): 45-53, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20079878

RESUMO

Theoretical simulations are particularly well suited to investigate, at a molecular level, direct and indirect effects of ionising radiations in DNA, as in the particular case of irradiation by swift heavy ions such as those used in hadron therapy. In the past recent years, we have developed the modeling at the microscopic level of the early stages of the Coulomb explosion of DNA molecules immersed in liquid water that follows the irradiation by swift heavy ions. To that end, Time-Dependent Density Functional Theory molecular dynamics simulations (TD-DFT MD) have been developed where localised Wannier orbitals are propagated. This latter enables to separate molecular orbitals of each water molecule from the molecular orbitals of the biomolecule. Our main objective is to demonstrate that the double ionisation of one molecule of the liquid sample, either one water molecule from the solvent or the biomolecule, may be in some cases responsible for the formation of an atomic oxygen as a direct consequence of the molecule Coulomb explosion. Our hypothesis is that the molecular double ionisation arising from irradiation by swift heavy ions (about 10% of ionisation events by ions whose velocity is about the third of speed of light), as a primary event, though maybe less probable than other events resulting from the electronic cascading (for instance, electronic excitations, electron attachments), may be systematically more damageable (and more lethal), as supported by experiments that have been carried out in our group in the 1990s (in studies of damages created by K holes in DNA). The chemical reactivity of the produced atomic oxygen with other radicals present in the medium will ultimately lead to chemical products that are harmful to DNA. In the present paper, we review our theoretical methodology in an attempt that the community be familiar with our new approach. Results on the production of atomic oxygen as a result of the double ionisation of water or as a result of the double ionisation of the Uracil RNA base will be presented.


Assuntos
Dano ao DNA , Modelos Teóricos , Radiação Ionizante , Água/química , Biologia Computacional , Íons Pesados , Imersão , Simulação de Dinâmica Molecular , Oxigênio/química , Uracila/química
16.
J Chem Phys ; 133(10): 104301, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20849166

RESUMO

We find that the most stable fullerene isomers, C(70)-C(94), form efficiently in close-to central collisions between keV atomic ions and weakly bound clusters of more than 15 C(60)-molecules. We observe extraordinarily high yields of C(70) and marked preferences for C(78) and C(84). Larger even-size carbon molecules, C(96)-C(180), follow a smooth log-normal (statistical) intensity distribution. Measurements of kinetic energies indicate that C(70)-C(94) mainly are formed by coalescence reactions between small carbon molecules and C(60), while C(n) with n≥96 are due to self-assembly (of small molecules) and shrinking hot giant fullerenes.


Assuntos
Fulerenos/química , Íons/química , Cinética , Estereoisomerismo , Termodinâmica
17.
Nat Commun ; 7: 13550, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874002

RESUMO

Helium has a unique phase diagram and below 25 bar it does not form a solid even at the lowest temperatures. Electrostriction leads to the formation of a solid layer of helium around charged impurities at much lower pressures in liquid and superfluid helium. These so-called 'Atkins snowballs' have been investigated for several simple ions. Here we form HenC60+ complexes with n exceeding 100 via electron ionization of helium nanodroplets doped with C60. Photofragmentation of these complexes is measured by merging a tunable narrow-bandwidth laser beam with the ions. A switch from red- to blueshift of the absorption frequency of HenC60+ on addition of He atoms at n=32 is associated with a phase transition in the attached helium layer from solid to partly liquid (melting of the Atkins snowball). Elaborate molecular dynamics simulations using a realistic force field and including quantum effects support this interpretation.

19.
Phys Rev Lett ; 100(18): 183401, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18518369

RESUMO

We have determined absolute charge transfer and fragmentation cross sections in He2++C60 collisions in the impact-energy range 0.1-250 keV by using a combined experimental and theoretical approach. We have found that the cross sections for the formation of He+ and He0 are comparable in magnitude, which cannot be explained by the sole contribution of pure single and double electron capture but also by contribution of transfer-ionization processes that are important even at low impact energies. The results show that multifragmentation is important only at impact energies larger than 40 keV; at lower energies, sequential C2 evaporation is the dominant process.

20.
Phys Rev Lett ; 95(1): 013401, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16090614

RESUMO

We perform density functional theory calculations of Cq+60 and Cq+58 fullerenes as well as of transition states related to dissociation of Cq+60 into Cq-s(+)58 and C(s+)2 for charges q=0-14. For q< or =8, the lowest fission barrier corresponds to C+2 emission, whereas, for higher q values, the lowest barrier corresponds to the emission of two atomic fragments [2C]s+ with s> or =2. We conclude that the Coulomb stability limit corresponds to q=14.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA