Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 165(9): 976-984, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31274400

RESUMO

Pseudomonas aeruginosa is a metabolically versatile bacterium and also an important opportunistic pathogen. It has a remarkable genomic structure since the genetic information encoding its pathogenicity-related traits belongs to its core-genome while both environmental and clinical isolates are part of the same population with a highly conserved genomic sequence. Unexpectedly, considering the high level of sequence identity and homologue gene number shared between different P. aeruginosa isolates, the presence of specific essential genes of the two type strains PAO1 and PA14 has been reported to be highly variable. Here we report the detailed bioinformatics analysis of the essential genes of P. aeruginosa PAO1 and PA14 that have been previously experimentally identified and show that the reported gene variability was owed to sequencing and annotation inconsistencies, but that in fact they are highly conserved. This bioinformatics analysis led us to the definition of 348 P. aeruginosa general essential genes. In addition we show that 342 of these 348 essential genes are conserved in Azotobacter vinelandii, a nitrogen-fixing, cyst-forming, soil bacterium. These results support the hypothesis of A. vinelandii having a polyphyletic origin with a Pseudomonads genomic backbone, and are a challenge to the accepted theory of bacterial evolution.


Assuntos
Azotobacter vinelandii/genética , Bactérias/genética , Evolução Biológica , Genes Essenciais , Pseudomonas aeruginosa/genética , Azotobacter vinelandii/patogenicidade , Bactérias/classificação , Biologia Computacional/métodos , Sequência Conservada , Evolução Molecular , Genes Bacterianos , Genoma Bacteriano , Pseudomonas aeruginosa/patogenicidade
2.
Anaerobe ; 55: 11-23, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30366118

RESUMO

Obesity is a metabolic disorder and global health issue. In Mexico 34.4% of children between 5 and 11 years-old are overweight or obese. Here we address this issue studying the gut microbiome in a sample of Mexican children affected by obesity. We performed metagenomic shotgun-sequencing of DNA isolated from fecal samples from a cohort of normal weight and obese Mexican children using Illumina platform with HiSeq 2500. We also examined their metabolic factors and fecal short-chain fatty acids concentration. The results show that a remarkable dysbiosis of bacteria, archaea and viruses was not observed in the obese children group compared to the normal weight group; however, the archaeal community exhibited an increase of unclassified Methanobrevibacter spp. in obese children. The bacterial communities of all participants were clustered into three different enterotypes. Most normal weight children have a gut bacterial community dominated by Ruminococcus spp. (Enterotype 3), while most obese children had a community dominated by Prevotella spp. (Enterotype 2). On the other hand, changes in the gut microbiome were correlated with clinical metadata and could be used to stratify individuals based on their phenotype. The species Megamonas spp. were over-represented in obese children, whereas members of the family Oscillospiraceae were depleted in the same individuals and negatively correlated with levels of serum cholesterol. A microbiome comparative metabolic pathway analysis showed that two KEGG pathway modules of glycolysis, Glycolysis I (from Glucose 6-Phosphate), and Glycolysis II (from Fructose 6-Phosphate) were significantly overrepresented in normal weight children. Our results establish specific alterations in the gut microbiome of Mexican children affected of obesity, along with clinical alterations, providing information on the microbiome composition that may be useful for prognosis, diagnosis, and treatment.


Assuntos
Archaea/classificação , Bactérias/classificação , Disbiose/complicações , Microbioma Gastrointestinal , Obesidade/complicações , Vírus/classificação , Archaea/genética , Bactérias/genética , Criança , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metaboloma , México , Análise de Sequência de DNA , Vírus/genética
3.
BMC Genomics ; 15: 318, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24773920

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. RESULTS: In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. CONCLUSIONS: Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed.


Assuntos
Pseudomonas aeruginosa/isolamento & purificação , Genoma Bacteriano , Dados de Sequência Molecular , Fenótipo , Pseudomonas aeruginosa/genética , Virulência
4.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37496200

RESUMO

Social cheating is the exploitation of public goods that are costly metabolites, like exoproteases. Exoprotease exploitation in Pseudomonas aeruginosa has been studied in reference strains. Experimental evolution with reference strains during continuous growth in casein has demonstrated that nonexoprotease producers that are lasR mutants are selected while they behave as social cheaters. However, noncanonical quorum-sensing systems exist in P. aeruginosa strains, which are diverse. In this work, the exploitation of exoproteases in the environmental strain ID4365 was evaluated; ID4365 has a nonsense mutation that precludes expression of LasR. ID4365 produces exoproteases under the control of RhlR, and harbors an inducible prophage. As expected, rhlR mutants of ID4365 behave as social cheaters, and exoprotease-deficient individuals accumulate upon continuous growth in casein. Moreover, in all continuous cultures, population collapses occur. However, this also sometimes happens before cheaters dominate. Interestingly, during growth in casein, ID4565's native prophage is induced, suggesting that the metabolic costs imposed by social cheating may increase its induction, promoting population collapses. Accordingly, lysogenization of the PAO1 lasR mutant with this prophage accelerated its collapse. These findings highlight the influence of temperate phages in social cheating.


Assuntos
Pseudomonas aeruginosa , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Pseudomonas aeruginosa/genética , Caseínas/genética , Caseínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lisogenia , Prófagos/genética
5.
J Bacteriol ; 193(14): 3684-5, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602331

RESUMO

Lactococcus garvieae is the etiological agent of lactococcosis disease, affecting many cultured fish species worldwide. In addition, this bacterium is currently considered a potential zoonotic microorganism since it is known to cause several opportunistic human infections. Here we present the draft genome sequence of the L. garvieae strain UNIUD074.


Assuntos
Doenças dos Peixes/microbiologia , Genoma Bacteriano , Lactococcus/isolamento & purificação , Infecções Estreptocócicas/veterinária , Animais , Sequência de Bases , Surtos de Doenças , Doenças dos Peixes/epidemiologia , Itália/epidemiologia , Lactococcus/classificação , Lactococcus/genética , Dados de Sequência Molecular , Oncorhynchus mykiss/microbiologia , Infecções Estreptocócicas/microbiologia
6.
J Bacteriol ; 193(21): 6092-3, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21994924

RESUMO

Bacteria of the genus Citricoccus have been isolated from ecological niches characterized by diverse abiotic stress conditions. Here we report the first genome draft of a strain of the genus Citricoccus isolated from the extremely oligotrophic Churince system in the Cuatro Ciénegas Basin (CCB) in Coahuila, Mexico.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Micrococcaceae/genética , Microbiologia Ambiental , México , Micrococcaceae/isolamento & purificação , Dados de Sequência Molecular , Análise de Sequência de DNA
7.
Proc Natl Acad Sci U S A ; 105(15): 5803-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18408155

RESUMO

The Cuatro Ciénegas Basin (CCB) in the central part of the Chihuahan desert (Coahuila, Mexico) hosts a wide diversity of microorganisms contained within springs thought to be geomorphological relics of an ancient sea. A major question remaining to be answered is whether bacteria from CCB are ancient marine bacteria that adapted to an oligotrophic system poor in NaCl, rich in sulfates, and with extremely low phosphorus levels (<0.3 microM). Here, we report the complete genome sequence of Bacillus coahuilensis, a sporulating bacterium isolated from the water column of a desiccation lagoon in CCB. At 3.35 Megabases this is the smallest genome sequenced to date of a Bacillus species and provides insights into the origin, evolution, and adaptation of B. coahuilensis to the CCB environment. We propose that the size and complexity of the B. coahuilensis genome reflects the adaptation of an ancient marine bacterium to a novel environment, providing support to a "marine isolation origin hypothesis" that is consistent with the geology of CCB. This genomic adaptation includes the acquisition through horizontal gene transfer of genes involved in phosphorous utilization efficiency and adaptation to high-light environments. The B. coahuilensis genome sequence also revealed important ecological features of the bacterial community in CCB and offers opportunities for a unique glimpse of a microbe-dominated world last seen in the Precambrian.


Assuntos
Adaptação Fisiológica/genética , Bacillus/genética , Evolução Biológica , Genoma Bacteriano , Água do Mar , Sequência de Bases , Meio Ambiente , Transferência Genética Horizontal , Genes Bacterianos , Luz , Dados de Sequência Molecular , Fósforo/metabolismo
8.
BMC Genomics ; 11: 332, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504335

RESUMO

BACKGROUND: The presence of Bacillus in very diverse environments reflects the versatile metabolic capabilities of a widely distributed genus. Traditional phylogenetic analysis based on limited gene sampling is not adequate for resolving the genus evolutionary relationships. By distinguishing between core and pan-genome, we determined the evolutionary and functional relationships of known Bacillus. RESULTS: Our analysis is based upon twenty complete and draft Bacillus genomes, including a newly sequenced Bacillus isolate from an aquatic environment that we report for the first time here. Using a core genome, we were able to determine the phylogeny of known Bacilli, including aquatic strains whose position in the phylogenetic tree could not be unambiguously determined in the past. Using the pan-genome from the sequenced Bacillus, we identified functional differences, such as carbohydrate utilization and genes involved in signal transduction, which distinguished the taxonomic groups. We also assessed the genetic architecture of the defining traits of Bacillus, such as sporulation and competence, and showed that less than one third of the B. subtilis genes are conserved across other Bacilli. Most variation was shown to occur in genes that are needed to respond to environmental cues, suggesting that Bacilli have genetically specialized to allow for the occupation of diverse habitats and niches. CONCLUSIONS: The aquatic Bacilli are defined here for the first time as a group through the phylogenetic analysis of 814 genes that comprise the core genome. Our data distinguished between genomic components, especially core vs. pan-genome to provide insight into phylogeny and function that would otherwise be difficult to achieve. A phylogeny may mask the diversity of functions, which we tried to uncover in our approach. The diversity of sporulation and competence genes across the Bacilli was unexpected based on previous studies of the B. subtilis model alone. The challenge of uncovering the novelties and variations among genes of the non-subtilis groups still remains. This task will be best accomplished by directing efforts toward understanding phylogenetic groups with similar ecological niches.


Assuntos
Bacillus/genética , Evolução Molecular , Genômica/métodos , Bacillus/fisiologia , Genes Bacterianos/genética , Filogenia , Esporos Bacterianos/genética
9.
Sci Rep ; 10(1): 8798, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472074

RESUMO

The metro is one of the more representative urban transportation systems of Mexico City, and it transports approximately 4.5 million commuters every day. Large crowds promote the exchange of microbes between humans. In this study, we determined the bacterial diversity profile of the Mexico City metro by massive sequencing of the 16S rRNA gene. We identified a total of 50,174 operational taxonomic units (OTUs) and 1058 genera. The metro microbiome was dominated by the phylum Actinobacteria and by the genera Cutibacterium (15%) (C. acnes 13%), Corynebacterium (13%), Streptococcus (9%), and Staphylococcus (5%) (S. epidermidis; 4%), reflecting the microbe composition of healthy human skin. The metro likely microbial sources were skin, dust, saliva, and vaginal, with no fecal contribution detected. A total of 420 bacterial genera were universal to the twelve metro lines tested, and those genera contributed to 99.10% of the abundance. The annual 1.6 billion ridership makes this public transport a main hub for microbe-host-environment interactions. Finally, this study shows that the microbial composition of the Mexico City metro comes from a mixture of environmental and human sources and that commuters are exposed to healthy composition of the human microbiota.


Assuntos
Bactérias/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Meios de Transporte/instrumentação , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbiologia Ambiental , Contaminação de Equipamentos , Humanos , México , Microbiota , Filogenia , Ferrovias , Reforma Urbana
10.
Sci Rep ; 10(1): 12487, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719372

RESUMO

The vaginal microbiota of healthy women typically has low diversity, which increases after perturbations. Among these, lifestyle associated with certain sexual and antimicrobial practices may be associated with higher diversity. To test this hypothesis, we characterized the vaginal microbiota in the cervicovaginal and introital sites in sexually active Amerindians (N = 82) spanning urbanization, and in urban mestizos (N = 29), in the Venezuelan Amazonas. HPV status was also considered. Sampling was performed in an urban gradient from remote villages to a town, and women were individually classified by the degree of urbanization (low, medium, and high). Amerindian cervicovaginal and introital microbiota diversity were not associated with major changes in urbanization or ethnicity. There was a non-significant trend of increased diversity with urbanization, with a few taxa found overrepresented in urban Amerindians (Brevibacterium linens and Peptoniphilus lacrimalis) or mestizos (Mobiluncus mulieris and Prevotella sp.). Among all women, cervicovaginal and introital samples clustered, respectively, in four and two community state types (CSTs), where most profiles were dominated by Lactobacillus iners, Gardnerella vaginalis or were highly diverse profiles. HPV status did not associate with microbial diversity. In conclusion, no association was found between urban level and the vaginal microbiome in Amerindian women, and little difference was found between ethnicities. L. iners and high diversity profiles, associated with vaginal health outcomes, prevail in these populations.


Assuntos
Microbiota , Urbanização , Vagina/microbiologia , Biodiversidade , Colo do Útero/microbiologia , Análise por Conglomerados , Feminino , Geografia , Humanos , Infecções por Papillomavirus/microbiologia , Venezuela , Indígena Americano ou Nativo do Alasca
11.
Artigo em Inglês | MEDLINE | ID: mdl-32266159

RESUMO

Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder, worldwide, with a high prevalence among Mestizo Latin Americans. Because several inflammatory disorders appear to affect this population, a further understanding of host genomic background variants, in conjunction with colonic mucosa dysbiosis, is necessary to determine IBS physiopathology and the effects of environmental pressures. Using a simple polygenic model, host single nucleotide polymorphisms (SNPs) and the taxonomic compositions of microbiota were compared between IBS patients and healthy subjects. As proof of concept, five IBS-Rome III patients and five healthy controls (HCs) were systematically studied. The human and bacterial intestinal metagenome of each subject was taxonomically annotated and screened for previously annotated IBS, ulcerative colitis, and Crohn's disease-associated SNPs or taxon abundance. Dietary data and fecal markers were collected and associated with the intestinal microbiome. However, more than 1,000 variants were found, and at least 76 SNPs differentiated IBS patients from HCs, as did associations with 4 phyla and 10 bacterial genera. In this study, we found elements supporting a polygenic background, with frequent variants, among the Mestizo population, and the colonic mucosal enrichment of Bacteroides, Alteromonas, Neisseria, Streptococcus, and Microbacterium, may serve as a hallmark for IBS.


Assuntos
Bactérias/classificação , Colo/microbiologia , Etnicidade , Microbioma Gastrointestinal , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/microbiologia , Herança Multifatorial , Adulto , Bactérias/genética , Encéfalo/metabolismo , Dieta , Etnicidade/genética , Fezes/microbiologia , Feminino , Frequência do Gene , Humanos , Imunidade/genética , Mucosa Intestinal/microbiologia , Masculino , Metagenoma , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
12.
Res Microbiol ; 170(4-5): 235-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30922683

RESUMO

A weekly conference series paired with lectures entitled "Microbiome-MX: exploring the Microbiota and Microbiome Research in Mexico" was organized to provide a multidisciplinary overview of the most recent research done in Mexico using high-throughput sequencing. Scientists and postgraduate students from several disciplines such as microbiology, bioinformatics, virology, immunology, nutrition, and medical genomics gathered to discuss state of the art in each of their respective subjects of expertise, as well as advances, applications and new opportunities on microbiota/microbiome research. In particular, high-throughput sequencing is a crucial tool to understand the challenges of a megadiverse developing country as Mexico, and moreover to know the scientific capital and capabilities available for collaboration. The conference series addressed three main topics important for Mexico: i) the complex role of microbiota in health and prevalent diseases such as obesity, diabetes, inflammatory bowel disease, tuberculosis, HIV, autoimmune diseases and gastric cancer; ii) the use of local, traditional and prehispanic products as pre/probiotics to modulate the microbiota and improve human health; and iii) the impact of the microbiota in shaping the biodiversity of economically important terrestrial and marine ecosystems. Herein, we summarize the contributions that Mexican microbiota/microbiome research is making to the global trends, describing the highlights of the conferences and lectures, rather than a review of the state-of-the-art of this research. This meeting report also presents the efforts of a multidisciplinary group of scientist to encourage collaborations and bringing this research field closer for younger generations.


Assuntos
Bactérias/classificação , Biologia Computacional/métodos , Microbioma Gastrointestinal/fisiologia , Bactérias/genética , Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , México , Saúde Pública/métodos
14.
Elife ; 72018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30457104

RESUMO

Barriers to microbial migrations can lead adaptive radiations and increased endemism. We propose that extreme unbalanced nutrient stoichiometry of essential nutrients can be a barrier to microbial immigration over geological timescales. At the oasis in the Cuatro Ciénegas Basin in Mexico, nutrient stoichiometric proportions are skewed given the low phosphorus availability in the ecosystem. We show that this endangered oasis can be a model for a lost world. The ancient niche of extreme unbalanced nutrient stoichiometry favoured survival of ancestral microorganisms. This extreme nutrient imbalance persisted due to environmental stability and low extinction rates, generating a diverse and unique bacterial community. Several endemic clades of Bacillus invaded the Cuatro Cienegas region in two geological times, the late Precambrian and the Jurassic. Other lineages of Bacillus, Clostridium and Bacteroidetes migrated into the basin in isolated events. Cuatro Ciénegas Basin conservation is vital to the understanding of early evolutionary and ecological processes.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biota , Fósforo/análise , Microbiologia da Água , Água/química , Bactérias/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , México , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Front Microbiol ; 9: 1059, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29910775

RESUMO

The definition of bacterial essential genes has been widely pursued using different approaches. Their study has impacted several fields of research such as synthetic biology, the construction of bacteria with minimal chromosomes, the search for new antibiotic targets, or the design of strains with biotechnological applications. Bacterial genomes are mosaics that only share a small subset of gene-sequences (core genome) even among members of the same species. It has been reported that the presence of essential genes is highly variable between closely related bacteria and even among members of the same species, due to the phenomenon known as "non-orthologous gene displacement" that refers to the coding for an essential function by genes with no sequence homology due to horizontal gene transfer (HGT). The existence of dormant forms among bacteria and the high incidence of HGT have been proposed to be driving forces of bacterial evolution, and they might have a role in the low level of conservation of essential genes among related bacteria by non-orthologous gene displacement, but this correlation has not been recognized. The aim of this mini-review is to give a brief overview of the approaches that have been taken to define and study essential genes, and the implications of non-orthologous gene displacement in bacterial evolution, focusing mainly in the case of Escherichia coli. To this end, we reviewed the available literature, and we searched for the presence of the essential genes defined by mutagenesis in the genomes of the 63 best-sequenced E. coli genomes that are available in NCBI database. We could not document specific cases of non-orthologous gene displacement among the E. coli strains analyzed, but we found that the quality of the genome-sequences in the database is not enough to make accurate predictions about the conservation of essential-genes among members of this bacterial species.

16.
mSphere ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720524

RESUMO

Human papillomavirus (HPV), an etiological agent of cervical cancer (CC), has infected humans since ancient times. Amerindians are the furthest migrants out of Africa, and they reached the Americas more than 14,000 years ago. Some groups still remain isolated, and some migrate to towns, forming a gradient spanning urbanization. We hypothesized that, by virtue of their history, lifestyle, and isolation from the global society, remote Amerindian women have lower HPV diversity than do urban women (Amerindian or mestizo). Here we determined the diversity of the 25 most relevant cervical HPV types in 82 Amerindians spanning urbanization (low, medium, and high, consistent with the exposure to urban lifestyles of the town of Puerto Ayacucho in the Venezuelan Amazonas State), and in 29 urban mestizos from the town. Cervical, anal, oral, and introitus samples were taken, and HPVs were typed using reverse DNA hybridization. A total of 23 HPV types were detected, including 11 oncogenic or high-risk types, most associated with CC. Cervical HPV prevalence was 75%, with no differences by group, but Amerindians from low and medium urbanization level had significantly lower HPV diversity than mestizos did. In Amerindians, but not in mestizos, infections by only high-risk HPVs were higher than coinfections or by exclusively low-risk HPVs. Cervical abnormalities only were observed in Amerindians (9/82), consistent with their high HPV infection. The lower cervical HPV diversity in more isolated Amerindians is consistent with their lower exposure to the global pool, and transculturation to urban lifestyles could have implications on HPV ecology, infection, and virulence.IMPORTANCE The role of HPV type distribution on the disparity of cervical cancer (CC) incidence between human populations remains unknown. The incidence of CC in the Amazonas State of Venezuela is higher than the national average. In this study, we determined the diversity of known HPV types (the viral agent of CC) in Amerindian and mestizo women living in the Venezuelan Amazonas State. Understanding the ecological diversity of HPV in populations undergoing lifestyle transformations has important implication on public health measures for CC prevention.


Assuntos
Variação Genética , Genótipo , Papillomaviridae/classificação , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/virologia , Adolescente , Adulto , Indígena Americano ou Nativo do Alasca , Coinfecção/epidemiologia , Coinfecção/virologia , Feminino , Técnicas de Genotipagem , Humanos , Pessoa de Meia-Idade , Hibridização de Ácido Nucleico , Papillomaviridae/genética , Prevalência , Venezuela/epidemiologia , Adulto Jovem
17.
PeerJ ; 5: e3280, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484675

RESUMO

Phytostabilization is a remediation technology that uses plants for in-situ stabilization of contamination in soils and mine tailings. The objective of this study was to identify native plant species with potential for phytostabilization of the abandoned mine tailings in Nacozari, Sonora in northern Mexico. A flora of 42 species in 16 families of angiosperms was recorded on the tailings site and the abundance of the most common perennial species was estimated. Four of the five abundant perennial species showed evidence of regeneration: the ability to reproduce and establish new seedlings. A comparison of selected physicochemical properties of the tailings in vegetated patches with adjacent barren areas suggests that pH, electrical conductivity, texture, and concentration of potentially toxic elements do not limit plant distribution. For the most abundant species, the accumulation factor for most metals was <1, with the exception of Zn in two species. A short-term experiment on adaptation revealed limited evidence for the formation of local ecotypes in Prosopis velutina and Amaranthus watsonii. Overall, the results of this study indicate that five native plant species might have potential for phytostabilization of the Nacozari tailings and that seed could be collected locally to revegetate the site. More broadly, this study provides a methodology that can be used to identify native plants and evaluate their phytostabilization potential for similar mine tailings.

18.
PeerJ ; 4: e2837, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028487

RESUMO

BACKGROUND: Cockatiels (Nymphicus hollandicus) were originally endemic to Australia; now they are popular pets with a global distribution. It is now possible to conduct detailed molecular studies on cultivable and uncultivable bacteria that are part of the intestinal microbiome of healthy animals. These studies show that bacteria are an essential part of the metabolic capacity of animals. There are few studies on bird microbiomes and, to the best of our knowledge, this is the first report on the cockatiel microbiome. METHODS: In this paper, we analyzed the gut microbiome from fecal samples of three healthy adult cockatiels by massive sequencing of the 16S rRNA gene. Additionally, we compared the cockatiel fecal microbiomes with those of other bird species, including poultry and wild birds. RESULTS: The vast majority of the bacteria found in cockatiels were Firmicutes, while Proteobacteria and Bacteroidetes were poorly represented. A total of 19,280 different OTUs were detected, of which 8,072 belonged to the Erysipelotrichaceae family. DISCUSSION: It is relevant to study cockatiel the microbiomes of cockatiels owing to their wide geographic distribution and close human contact. This study serves as a reference for cockatiel bacterial diversity. Despite the large OTU numbers, the diversity is not even and is dominated by Firmicutes of the Erysipelotrichaceae family. Cockatiels and other wild birds are almost depleted of Bacteroidetes, which happen to be abundant in poultry-related birds, and this is probably associated with the intensive human manipulation of poultry bird diets. Some probable pathogenic bacteria, such as Clostridium and Serratia, appeared to be frequent inhabitants of the fecal microbiome of cockatiels, whereas other potential pathogens were not detected.

19.
PLoS One ; 11(2): e0148979, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859489

RESUMO

The genome and transcriptome sequences of the aquatic, rootless, and carnivorous plant Utricularia gibba L. (Lentibulariaceae), were recently determined. Traps are necessary for U. gibba because they help the plant to survive in nutrient-deprived environments. The U. gibba's traps (Ugt) are specialized structures that have been proposed to selectively filter microbial inhabitants. To determine whether the traps indeed have a microbiome that differs, in composition or abundance, from the microbiome in the surrounding environment, we used whole-genome shotgun (WGS) metagenomics to describe both the taxonomic and functional diversity of the Ugt microbiome. We collected U. gibba plants from their natural habitat and directly sequenced the metagenome of the Ugt microbiome and its surrounding water. The total predicted number of species in the Ugt was more than 1,100. Using pan-genome fragment recruitment analysis, we were able to identify to the species level of some key Ugt players, such as Pseudomonas monteilii. Functional analysis of the Ugt metagenome suggests that the trap microbiome plays an important role in nutrient scavenging and assimilation while complementing the hydrolytic functions of the plant.


Assuntos
Genoma de Planta/genética , Lamiales/genética , Metagenoma , Estruturas Vegetais/genética , Carnivoridade , DNA de Plantas/genética , Biblioteca Gênica , Lamiales/microbiologia , Microbiota , Estruturas Vegetais/microbiologia
20.
PLoS One ; 10(11): e0141866, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26569117

RESUMO

NAC proteins constitute one of the largest groups of plant-specific transcription factors and are known to play essential roles in various developmental processes. They are also important in plant responses to stresses such as drought, soil salinity, cold, and heat, which adversely affect growth. The current knowledge regarding the distribution of NAC proteins in plant lineages comes from relatively small samplings from the available data. In the present study, we broadened the number of plant species containing the NAC family origin and evolution to shed new light on the evolutionary history of this family in angiosperms. A comparative genome analysis was performed on 24 land plant species, and NAC ortholog groups were identified by means of bidirectional BLAST hits. Large NAC gene families are found in those species that have experienced more whole-genome duplication events, pointing to an expansion of the NAC family with divergent functions in flowering plants. A total of 3,187 NAC transcription factors that clustered into six major groups were used in the phylogenetic analysis. Many orthologous groups were found in the monocot and eudicot lineages, but only five orthologous groups were found between P. patens and each representative taxa of flowering plants. These groups were called basal orthologous groups and likely expanded into more recent taxa to cope with their environmental needs. This analysis on the angiosperm NAC family represents an effort to grasp the evolutionary and functional diversity within this gene family while providing a basis for further functional research on vascular plant gene families.


Assuntos
Evolução Biológica , Magnoliopsida/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Aclimatação/genética , Motivos de Aminoácidos , Análise por Conglomerados , Meio Ambiente , Duplicação Gênica , Genes de Plantas , Variação Genética , Genoma de Planta , Genômica , Funções Verossimilhança , Magnoliopsida/fisiologia , Cadeias de Markov , Filogenia , Software , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA