Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5297, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35351950

RESUMO

This work reports highly selective multiple analyte detection by exploiting two different mechanisms; absorption and thermal conductivity using a single MEMS device. To illustrate the concept, we utilize a resonator composed of a clamped-guided arch beam connected to a flexural beam and a T-shaped moveable mass. A finite element model is used to study the mode shapes and mechanical behavior of the device with good agreement reported with the experimental data. The resonator displays two distinct out-of-plane modes of vibration. For humidity detection, we utilize physisorption by functionalizing the surface with graphene oxide (GO), which has strong affinity toward water vapors. The GO solution is prepared and drop-casted over the mass surface using an inkjet printer. On the other hand, cooling the heated flexural beams is used for helium (He) detection (thermal-conductivity-based sensor). The sensor characteristics are extensively studied when the modes are individually and simultaneously actuated. Results affirm the successful utilization of each mode for selective detection of relative humidity and He. This novel mode-dependent selective detection of multiple analytes can be a promising building block for the development of miniature, low-powered, and selective smart sensors for modern portable electronic devices.

2.
Micromachines (Basel) ; 12(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34442552

RESUMO

In this research, we investigate the structural behavior, including the snap-through and pull-in instabilities, of in-plane microelectromechanical COSINE-shaped and electrically actuated clamped-clamped micro-beams resonators. The work examines various electrostatic actuation patterns including uniform and non-uniform parallel-plates airgap arrangements, which offer options to actuate the arches in the opposite and same direction of their curvature. The nonlinear equation of motion of a shallow arch is discretized into a reduced-order model based on the Galerkin's expansion method, which is then numerically solved. Static responses are examined for various DC electrostatic loads starting from small values to large values near pull-in and snap-through instability ranges, if any. The eigenvalue problem of the micro-beam is solved revealing the variations of the first four natural frequencies as varying the DC load. Various simulations are carried out for several case studies of shallow arches of various geometrical parameters and airgap arrangements, which demonstrate rich and diverse static and dynamic behaviors. Results show few cases with multi-states and hysteresis behaviors where some with only the pull-in instability and others with both snap-through buckling and pull-in instabilities. It is found that the micro-arches behaviors are very sensitive to the electrode's configuration. The studied configurations reveal different possibilities to control the pull-in and snap-through instabilities, which can be used for improving arches static stroke range as actuators and for realizing wide-range tunable micro-resonators.

3.
Sci Rep ; 11(1): 21634, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737368

RESUMO

We present a highly sensitive Lorentz-force magnetic micro-sensor capable of measuring low field values. The magnetometer consists of a silicon micro-beam sandwiched between two electrodes to electrostatically induce in-plane vibration and to detect the output current. The method is based on measuring the resonance frequency of the micro-beam around the buckling zone to sense out-of-plane magnetic fields. When biased with a current of 0.91 mA (around buckling), the device has a measured sensitivity of 11.6 T-1, which is five orders of magnitude larger than the state-of-the-art. The measured minimum detectable magnetic field and the estimated resolution of the proposed magnetic sensor are 100 µT and 13.6 µT.Hz-1/2, respectively. An analytical model is developed based on the Euler-Bernoulli beam theory and the Galerkin discretization to understand and verify the micro-sensor performance. Good agreement is shown between analytical results and experimental data. Furthermore, the presented magnetometer is promising for measuring very weak biomagnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA