Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 68(3): 497-512, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32432341

RESUMO

Enzyme activity modulation by synthetic compounds provide strategies combining the inhibitory and therapeutic mode of action of the confirmed inhibitors. However, natural modulators could offer a valuable alternative for synthetic ones for the treatment of different chronic diseases (diabetes, hypertension, cancer); due to the numerous side effects of the latter. In vitro screening assays were conducted for Psidium guajava leaf methanolic extract against three metabolism-related enzymes; α-amylase, tyrosinase, and hyaluronidase. The obtained results showed that the examined extract retained weak and moderate multitarget inhibition against α-amylase, tyrosinase, and hyaluronidase, respectively; however, the leaf fractions exhibited stronger inhibitions for the three investigated enzymes. Fractionation of P. guajava leaf extract revealed that anthraquinones and ellagic acid are of the major active compounds with inhibitory activities for α-amylase, tyrosinase, and hyaluronidase. Kinetic studies showed that quinalizarin inhibition is competitive for both α-amylase and hyaluronidase, and ellagic acid inhibition for tyrosinase and hyaluronidase is competitive and un-competitive, respectively. The molecular docking studies of quinalizarin and ellagic acid with α-amylase, tyrosinase, and hyaluronidase showed high binding energies with different bonds stabilizing the ligand-protein complex. Compiling all obtained results led to conclude that both P. guajava leaf fractions, quinalizarin and ellagic acid, have multitarget activities with potential therapeutic applications in many metabolic disorders.


Assuntos
Inibidores Enzimáticos/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Psidium/química , Agaricales/enzimologia , Animais , Aspergillus oryzae/enzimologia , Bovinos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
2.
Biotechnol Appl Biochem ; 67(6): 960-972, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31769157

RESUMO

Enzyme activity modulation by synthetic compounds provide strategies combining the inhibitory and therapeutic mode of action of the confirmed inhibitors. However, natural modulators could offer a valuable alternative for synthetic ones for the treatment of different chronic diseases (diabetes, hypertension, cancer) due to the numerous side effects of the latter. In vitro screening assays were conducted for Punica granatum rind methanolic extract against three metabolism-related enzymes: α-amylase, tyrosinase, and hyaluronidase. The obtained results showed that the examined extract retained high multitarget inhibition with inhibition percentages 31.5 ± 1.3%, 75.9 ± 4.7%, and 68.5 ± 5.3% against α-amylase, tyrosinase, and hyaluronidase, respectively. Bioguided fractionation of P. granatum rind extract revealed that quercetin is the major active compound with inhibitory activities: 54.3 ± 2.7%, 94.2 ± 3.5%, and 90.9 ± 2.7% against α-amylase, tyrosinase, and hyaluronidase, respectively. Kinetic studies of enzymes showed that quercetin inhibition was noncompetitive, uncompetitive, and competitive for α-amylase, tyrosinase, and hyaluronidase, respectively. The molecular docking of quercetin with α-amylase and hyaluronidase showed high binding energy with different bonds stabilizing the ligand-protein complex. Compiling all obtained results led to conclude that both P. granatum rind extract and quercetin have multitarget activities with potential therapeutic applications in many metabolic disorders.


Assuntos
Aspergillus oryzae/enzimologia , Proteínas Fúngicas , Hialuronoglucosaminidase , Monofenol Mono-Oxigenase , Fenóis/química , Extratos Vegetais/química , Punica granatum/química , alfa-Amilases , Animais , Bovinos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Hialuronoglucosaminidase/antagonistas & inibidores , Hialuronoglucosaminidase/química , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA