Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35831950

RESUMO

Vsx2 is a transcription factor essential for retinal proliferation and bipolar cell differentiation, but the molecular mechanisms underlying its developmental roles are unclear. Here, we have profiled VSX2 genomic occupancy during mouse retinogenesis, revealing extensive retinal genetic programs associated with VSX2 during development. VSX2 binds and transactivates its enhancer in association with the transcription factor PAX6. Mice harboring deletions in the Vsx2 regulatory landscape exhibit specific abnormalities in retinal proliferation and in bipolar cell differentiation. In one of those deletions, a complete loss of bipolar cells is associated with a bias towards photoreceptor production. VSX2 occupies cis-regulatory elements nearby genes associated with photoreceptor differentiation and homeostasis in the adult mouse and human retina, including a conserved region nearby Prdm1, a factor implicated in the specification of rod photoreceptors and suppression of bipolar cell fate. VSX2 interacts with the transcription factor OTX2 and can act to suppress OTX2-dependent enhancer transactivation of the Prdm1 enhancer. Taken together, our analyses indicate that Vsx2 expression can be temporally and spatially uncoupled at the enhancer level, and they illuminate important mechanistic insights into how VSX2 is engaged with gene regulatory networks that are essential for retinal proliferation and cell fate acquisition.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Adulto , Animais , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Fatores de Transcrição/metabolismo
2.
Dev Biol ; 437(1): 27-40, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29518376

RESUMO

Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neurogênese/genética , Proteínas de Xenopus/genética , Animais , Western Blotting , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Placa Neural/embriologia , Placa Neural/metabolismo , Retina/embriologia , Retina/metabolismo , Xenopus laevis
3.
Development ; 142(23): 4092-106, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26628093

RESUMO

Retinal development requires precise temporal and spatial coordination of cell cycle exit, cell fate specification, cell migration and differentiation. When this process is disrupted, retinoblastoma, a developmental tumor of the retina, can form. Epigenetic modulators are central to precisely coordinating developmental events, and many epigenetic processes have been implicated in cancer. Studying epigenetic mechanisms in development is challenging because they often regulate multiple cellular processes; therefore, elucidating the primary molecular mechanisms involved can be difficult. Here we explore the role of Brg1 (Smarca4) in retinal development and retinoblastoma in mice using molecular and cellular approaches. Brg1 was found to regulate retinal size by controlling cell cycle length, cell cycle exit and cell survival during development. Brg1 was not required for cell fate specification but was required for photoreceptor differentiation and cell adhesion/polarity programs that contribute to proper retinal lamination during development. The combination of defective cell differentiation and lamination led to retinal degeneration in Brg1-deficient retinae. Despite the hypocellularity, premature cell cycle exit, increased cell death and extended cell cycle length, retinal progenitor cells persisted in Brg1-deficient retinae, making them more susceptible to retinoblastoma. ChIP-Seq analysis suggests that Brg1 might regulate gene expression through multiple mechanisms.


Assuntos
DNA Helicases/genética , DNA Helicases/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Retina/metabolismo , Retinoblastoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Apoptose , Padronização Corporal , Adesão Celular , Ciclo Celular , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Camundongos , Microftalmia/genética , Retina/patologia , Fatores de Tempo , Transgenes
4.
Development ; 140(14): 2867-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23739135

RESUMO

The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/ß-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.


Assuntos
Complexo Repressor Polycomb 2/metabolismo , Retina/embriologia , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Animais , Diferenciação Celular , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Receptores Frizzled/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Metilação , Complexo Repressor Polycomb 2/genética , Proteínas Repressoras/metabolismo , Retina/citologia , Retina/metabolismo , Proteínas de Xenopus/genética
5.
Cell Rep ; 43(6): 114291, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823017

RESUMO

Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with optic nerve atrophy and blindness. Here, we functionally interrogate the significance of the Atoh7 regulatory landscape to retinogenesis in mice. Deletion of the Atoh7 enhancer structure leads to RGC deficiency, optic nerve hypoplasia, and retinal blood vascular abnormalities, phenocopying inactivation of Atoh7. Further, loss of the Atoh7 remote enhancer impacts ipsilaterally projecting RGCs and disrupts proper axonal projections to the visual thalamus. Deletion of the Atoh7 remote enhancer is also associated with the dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3. Our data provide insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and highlight a key role of Atoh7 in the transcriptional control of axon guidance molecules.


Assuntos
Axônios , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Elementos Facilitadores Genéticos , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Camundongos , Axônios/metabolismo , Elementos Facilitadores Genéticos/genética , Neurogênese/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Nervo Óptico/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Retina/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Roundabout , Receptores de Superfície Celular
6.
Dev Biol ; 367(2): 91-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22565092

RESUMO

During organogenesis, tissues expand in size and eventually acquire consistent ratios of cells with dazzling diversity in morphology and function. During this process progenitor cells exit the cell cycle and execute differentiation programs through extensive genetic reprogramming that involves the silencing of proliferation genes and the activation of differentiation genes in a step-wise temporal manner. Recent years have witnessed expansion in our understanding of the epigenetic mechanisms that contribute to cellular differentiation and maturation during organ development, as this is a crucial step toward advancing regenerative therapy research for many intractable disorders. Among such epigenetic programs, the developmental roles of the polycomb repressive complex 2 (PRC2), a chromatin remodeling complex that mediates silencing of gene expression, have been under intensive examination. This review summarizes recent findings of how PRC2 functions to regulate the transition from proliferation to differentiation during organogenesis and discusses some aspects of the remaining questions associated with its regulation and mechanisms of action.


Assuntos
Organogênese/fisiologia , Proteínas Repressoras/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Desenvolvimento Muscular , Neurogênese , Organogênese/genética , Proteínas do Grupo Polycomb , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética
7.
Front Genet ; 12: 775205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764989

RESUMO

Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.

8.
Epigenetics Chromatin ; 14(1): 11, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563331

RESUMO

In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.


Assuntos
Epigênese Genética , Células-Tronco , Diferenciação Celular , Neurônios , Retina
9.
Dev Dyn ; 238(12): 3185-92, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19877271

RESUMO

The Polycomb repressive complex 2 is a multimeric aggregate that mediates silencing of a broad range of genes, and is associated with important biological contexts such as stem cell maintenance and cancer progression. PRC2 mainly trimethylates lysine 27 of histone H3 and is composed of three essential core subunits: EZH2, EED, and SUZ12. The Xenopus orthologs of PRC2 subunits Ezh2 and Eed have been described but Suz12 remained unidentified. Here, we report the cloning of the Xenopus Suz12, and determine its spatiotemporal expression during development. Xsuz12 transcript is provided maternally and continues to be expressed throughout development, particularly in the anterior part of the developing central nervous system. Importantly, comparative analysis of the expression of the PRC2 subunits Xez, Xeed, and Xrbbp4 indicates that their expression largely coincides with Xsuz12 in the nervous system, suggesting that PRC2 may have unexplored functions in the development of the frog central nervous system.


Assuntos
Desenvolvimento Embrionário/genética , Proteínas Repressoras/genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Embrião não Mamífero , Proteína Potenciadora do Homólogo 2 de Zeste , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
10.
Cell Rep ; 22(10): 2601-2614, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514090

RESUMO

Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 (Pou5f1), Klf4, Sox3, and Myc. Many of these induced pluripotent stem cells (iPSCs) retain memory, in terms of DNA methylation and histone modifications (epigenetic memory), of their cellular origins, and this may bias subsequent differentiation. Neurons are difficult to reprogram, and there has not been a systematic side-by-side characterization of reprogramming efficiency or epigenetic memory across different neuronal subtypes. Here, we compare reprogramming efficiency of five different retinal cell types at two different stages of development. Retinal differentiation from each iPSC line was measured using a quantitative standardized scoring system called STEM-RET and compared to the epigenetic memory. Neurons with the lowest reprogramming efficiency produced iPSC lines with the best retinal differentiation and were more likely to retain epigenetic memory of their cellular origins. In addition, we identified biomarkers of iPSCs that are predictive of retinal differentiation.


Assuntos
Reprogramação Celular , Metilação de DNA , Histonas/metabolismo , Organogênese , Organoides/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Retina/citologia , Retina/metabolismo , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Regiões Promotoras Genéticas/genética
11.
Neuron ; 94(3): 550-568.e10, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472656

RESUMO

In the developing retina, multipotent neural progenitors undergo unidirectional differentiation in a precise spatiotemporal order. Here we profile the epigenetic and transcriptional changes that occur during retinogenesis in mice and humans. Although some progenitor genes and cell cycle genes were epigenetically silenced during retinogenesis, the most dramatic change was derepression of cell-type-specific differentiation programs. We identified developmental-stage-specific super-enhancers and showed that most epigenetic changes are conserved in humans and mice. To determine how the epigenome changes during tumorigenesis and reprogramming, we performed integrated epigenetic analysis of murine and human retinoblastomas and induced pluripotent stem cells (iPSCs) derived from murine rod photoreceptors. The retinoblastoma epigenome mapped to the developmental stage when retinal progenitors switch from neurogenic to terminal patterns of cell division. The epigenome of retinoblastomas was more similar to that of the normal retina than that of retina-derived iPSCs, and we identified retina-specific epigenetic memory.


Assuntos
Carcinogênese/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , Metilação de DNA/genética , Epigênese Genética , Código das Histonas/genética , Retina/metabolismo , Retinoblastoma/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Retina/embriologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Proteína do Retinoblastoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA