Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(52): 27053-27062, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31818949

RESUMO

Adeno-associated virus (AAV) capsid modification enables the generation of recombinant vectors with tailored properties and tropism. Most approaches to date depend on random screening, enrichment, and serendipity. The approach explored here, called BRAVE (barcoded rational AAV vector evolution), enables efficient selection of engineered capsid structures on a large scale using only a single screening round in vivo. The approach stands in contrast to previous methods that require multiple generations of enrichment. With the BRAVE approach, each virus particle displays a peptide, derived from a protein, of known function on the AAV capsid surface, and a unique molecular barcode in the packaged genome. The sequencing of RNA-expressed barcodes from a single-generation in vivo screen allows the mapping of putative binding sequences from hundreds of proteins simultaneously. Using the BRAVE approach and hidden Markov model-based clustering, we present 25 synthetic capsid variants with refined properties, such as retrograde axonal transport in specific subtypes of neurons, as shown for both rodent and human dopaminergic neurons.

2.
RNA ; 24(5): 673-687, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29386333

RESUMO

Genome editing has proven to be highly potent in the generation of functional gene knockouts in dividing cells. In the CNS however, efficient technologies to repair sequences are yet to materialize. Reprogramming on the mRNA level is an attractive alternative as it provides means to perform in situ editing of coding sequences without nuclease dependency. Furthermore, de novo sequences can be inserted without the requirement of homologous recombination. Such reprogramming would enable efficient editing in quiescent cells (e.g., neurons) with an attractive safety profile for translational therapies. In this study, we applied a novel molecular-barcoded screening assay to investigate RNA trans-splicing in mammalian neurons. Through three alternative screening systems in cell culture and in vivo, we demonstrate that factors determining trans-splicing are reproducible regardless of the screening system. With this screening, we have located the most permissive trans-splicing sequences targeting an intron in the Synapsin I gene. Using viral vectors, we were able to splice full-length fluorophores into the mRNA while retaining very low off-target expression. Furthermore, this approach also showed evidence of functionality in the mouse striatum. However, in its current form, the trans-splicing events are stochastic and the overall activity lower than would be required for therapies targeting loss-of-function mutations. Nevertheless, the herein described barcode-based screening assay provides a unique possibility to screen and map large libraries in single animals or cell assays with very high precision.


Assuntos
Dependovirus/genética , Vetores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lentivirus/genética , Análise de Sequência de RNA/métodos , Trans-Splicing , Animais , Encéfalo/metabolismo , Feminino , Biblioteca Gênica , Células HEK293 , Células HeLa , Humanos , Íntrons , Camundongos Endogâmicos C57BL , Sinapsinas/genética
3.
Brain ; 141(7): 2014-2031, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788236

RESUMO

Recombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy. Important contributing factors are low transduction rates and inefficient distribution of the vector. To overcome these hurdles, a variety of capsid engineering methods have been utilized to generate capsids with improved transduction properties. Here we describe an alternative approach to capsid engineering, which draws on the natural evolution of the virus and aims to yield capsids that are better suited to infect human tissues. We generated an AAV capsid to include amino acids that are conserved among natural AAV2 isolates and tested its biodistribution properties in mice and rats. Intriguingly, this novel variant, AAV-TT, demonstrates strong neurotropism in rodents and displays significantly improved distribution throughout the central nervous system as compared to AAV2. Additionally, sub-retinal injections in mice revealed markedly enhanced transduction of photoreceptor cells when compared to AAV2. Importantly, AAV-TT exceeds the distribution abilities of benchmark neurotropic serotypes AAV9 and AAVrh10 in the central nervous system of mice, and is the only virus, when administered at low dose, that is able to correct the neurological phenotype in a mouse model of mucopolysaccharidosis IIIC, a transmembrane enzyme lysosomal storage disease, which requires delivery to every cell for biochemical correction. These data represent unprecedented correction of a lysosomal transmembrane enzyme deficiency in mice and suggest that AAV-TT-based gene therapies may be suitable for treatment of human neurological diseases such as mucopolysaccharidosis IIIC, which is characterized by global neuropathology.


Assuntos
Capsídeo/fisiologia , Terapia Genética/métodos , Engenharia de Proteínas/métodos , Animais , Dependovirus/genética , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Células Fotorreceptoras/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retina/fisiologia , Distribuição Tecidual , Transdução Genética
4.
Neurobiol Dis ; 109(Pt A): 148-162, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29037828

RESUMO

The intricate balance between dopaminergic and cholinergic neurotransmission in the striatum has been thoroughly difficult to characterize. It was initially described as a seesaw with a competing function of dopamine versus acetylcholine. Recent technical advances however, have brought this view into question suggesting that the two systems work rather in concert with the cholinergic interneurons (ChIs) driving dopamine release. In this study, we have utilized two transgenic Cre-driver rat lines, a choline acetyl transferase ChAT-Cre transgenic rat and a novel double-transgenic tyrosine hydroxylase TH-Cre/ChAT-Cre rat to further elucidate the role of striatal ChIs in normal motor function and in Parkinson's disease. Here we show that selective and reversible activation of ChIs using chemogenetic (DREADD) receptors increases locomotor function in intact rats and potentiate the therapeutic effect of L-DOPA in the rats with lesions of the nigral dopamine system. However, the potentiation of the L-DOPA effect is accompanied by an aggravation of L-DOPA induced dyskinesias (LIDs). These LIDs appear to be driven primarily through the indirect striato-pallidal pathway since the same effect can be induced by the D2 agonist Quinpirole. Taken together, the results highlight the intricate regulation of balance between the two output pathways from the striatum orchestrated by the ChIs.


Assuntos
Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiologia , Neurônios Dopaminérgicos/fisiologia , Interneurônios/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Colina O-Acetiltransferase/genética , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Discinesia Induzida por Medicamentos/fisiopatologia , Feminino , Interneurônios/citologia , Interneurônios/metabolismo , Levodopa/administração & dosagem , Locomoção , Masculino , Doença de Parkinson/metabolismo , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/fisiologia , Tirosina 3-Mono-Oxigenase/genética
5.
Acta Neuropathol ; 128(6): 805-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25296989

RESUMO

The cellular hallmarks of Parkinson's disease (PD) are the loss of nigral dopaminergic neurons and the formation of α-synuclein-enriched Lewy bodies and Lewy neurites in the remaining neurons. Based on the topographic distribution of Lewy bodies established after autopsy of brains from PD patients, Braak and coworkers hypothesized that Lewy pathology primes in the enteric nervous system and spreads to the brain, suggesting an active retrograde transport of α-synuclein (the key protein component in Lewy bodies), via the vagal nerve. This hypothesis, however, has not been tested experimentally thus far. Here, we use a human PD brain lysate containing different forms of α-synuclein (monomeric, oligomeric and fibrillar), and recombinant α-synuclein in an in vivo animal model to test this hypothesis. We demonstrate that α-synuclein present in the human PD brain lysate and distinct recombinant α-synuclein forms are transported via the vagal nerve and reach the dorsal motor nucleus of the vagus in the brainstem in a time-dependent manner after injection into the intestinal wall. Using live cell imaging in a differentiated neuroblastoma cell line, we determine that both slow and fast components of axonal transport are involved in the transport of aggregated α-synuclein. In conclusion, we here provide the first experimental evidence that different α-synuclein forms can propagate from the gut to the brain, and that microtubule-associated transport is involved in the translocation of aggregated α-synuclein in neurons.


Assuntos
Encéfalo/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Doença de Parkinson/fisiopatologia , alfa-Sinucleína/metabolismo , Animais , Transporte Axonal , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Trato Gastrointestinal/patologia , Humanos , Doença de Parkinson/patologia , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Nervo Vago/patologia , Nervo Vago/fisiopatologia
6.
Mol Ther Methods Clin Dev ; 29: 381-394, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37251982

RESUMO

Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.

7.
Stem Cell Reports ; 17(1): 159-172, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34971563

RESUMO

Transplantation in Parkinson's disease using human embryonic stem cell (hESC)-derived dopaminergic (DA) neurons is a promising future treatment option. However, many of the mechanisms that govern their differentiation, maturation, and integration into the host circuitry remain elusive. Here, we engrafted hESCs differentiated toward a ventral midbrain DA phenotype into the midbrain of a preclinical rodent model of Parkinson's disease. We then injected a novel DA-neurotropic retrograde MNM008 adeno-associated virus vector capsid, into specific DA target regions to generate starter cells based on their axonal projections. Using monosynaptic rabies-based tracing, we demonstrated for the first time that grafted hESC-derived DA neurons receive distinctly different afferent inputs depending on their projections. The similarities to the host DA system suggest a previously unknown directed circuit integration. By evaluating the differential host-to-graft connectivity based on projection patterns, this novel approach offers a tool to answer outstanding questions regarding the integration of grafted hESC-derived DA neurons.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/metabolismo , Biomarcadores , Rastreamento de Células , Expressão Gênica , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Mesencéfalo/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Transplante de Células-Tronco
9.
Nat Biotechnol ; 38(11): 1265-1273, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32451506

RESUMO

The study of brain development in humans is limited by the lack of tissue samples and suitable in vitro models. Here, we model early human neural tube development using human embryonic stem cells cultured in a microfluidic device. The approach, named microfluidic-controlled stem cell regionalization (MiSTR), exposes pluripotent stem cells to signaling gradients that mimic developmental patterning. Using a WNT-activating gradient, we generated a neural tissue exhibiting progressive caudalization from forebrain to midbrain to hindbrain, including formation of isthmic organizer characteristics. Single-cell transcriptomics revealed that rostro-caudal organization was already established at 24 h of differentiation, and that the first markers of a neural-specific transcription program emerged in the rostral cells at 48 h. The transcriptomic hallmarks of rostro-caudal organization recapitulated gene expression patterns of the early rostro-caudal neural plate in mouse embryos. Thus, MiSTR will facilitate research on the factors and processes underlying rostro-caudal neural tube patterning.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias Humanas/citologia , Microfluídica/métodos , Tubo Neural/embriologia , Proteínas Wnt/metabolismo , Padronização Corporal , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Análise de Célula Única , Transcriptoma/genética , Via de Sinalização Wnt
10.
Methods Mol Biol ; 1937: 59-87, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706390

RESUMO

Chemogenetics is the process of genetically expressing a macromolecule receptor capable of modulating the activity of the cell in response to selective chemical ligand. This chapter will cover the chemogenetic technologies that are available to date, focusing on the commonly available engineered or otherwise modified ligand-gated ion channels and G-protein-coupled receptors in the context of neuromodulation. First, we will give a brief overview of each chemogenetic approach as well as in vitro/in vivo applications, then we will list their strengths and weaknesses. Finally, we will provide tips for ligand application in each case.Each technology has specific limitations that make them more or less suitable for different applications in neuroscience although we will focus mainly on the most commonly used and versatile family named designer receptors exclusively activated by designer drugs or DREADDs. We here describe the most common cases where these can be implemented and provide tips on how and where these technologies can be applied in the field of neuroscience.


Assuntos
Encéfalo/fisiologia , Drogas Desenhadas/administração & dosagem , Engenharia de Proteínas/métodos , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Drogas Desenhadas/farmacologia , Humanos , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo
11.
Neuron ; 90(5): 955-68, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27161524

RESUMO

Transplantation of DA neurons is actively pursued as a restorative therapy in Parkinson's disease (PD). Pioneering clinical trials using transplants of fetal DA neuroblasts have given promising results, although a number of patients have developed graft-induced dyskinesias (GIDs), and the mechanism underlying this troublesome side effect is still unknown. Here we have used a new model where the activity of the transplanted DA neurons can be selectively modulated using a bimodal chemogenetic (DREADD) approach, allowing either enhancement or reduction of the therapeutic effect. We show that exclusive activation of a cAMP-linked (Gs-coupled) DREADD or serotonin 5-HT6 receptor, located on the grafted DA neurons, is sufficient to induce GIDs. These findings establish a mechanistic link between the 5-HT6 receptor, intracellular cAMP, and GIDs in transplanted PD patients. This effect is thought to be mediated through counteraction of the D2 autoreceptor feedback inhibition, resulting in a dysplastic DA release from the transplant.


Assuntos
Neurônios Dopaminérgicos/transplante , Discinesia Induzida por Medicamentos/fisiopatologia , Transplante de Tecido Fetal/efeitos adversos , Transtornos Parkinsonianos/metabolismo , Receptores de Serotonina/fisiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , AMP Cíclico/metabolismo , Diterpenos/farmacologia , Diterpenos Clerodânicos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Etilaminas/farmacologia , Feminino , Técnicas de Introdução de Genes , Humanos , Indóis/farmacologia , Oxidopamina , Transtornos Parkinsonianos/cirurgia , Complicações Pós-Operatórias , Ratos , Receptores de Serotonina/biossíntese , Receptores de Serotonina/efeitos dos fármacos
12.
PLoS One ; 9(7): e100869, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24999658

RESUMO

Synucleinopathies, characterized by intracellular aggregation of α-synuclein protein, share a number of features in pathology and disease progression. However, the vulnerable cell population differs significantly between the disorders, despite being caused by the same protein. While the vulnerability of dopamine cells in the substantia nigra to α-synuclein over-expression, and its link to Parkinson's disease, is well studied, animal models recapitulating the cortical degeneration in dementia with Lewy-bodies (DLB) are much less mature. The aim of this study was to develop a first rat model of widespread progressive synucleinopathy throughout the forebrain using adeno-associated viral (AAV) vector mediated gene delivery. Through bilateral injection of an AAV6 vector expressing human wild-type α-synuclein into the forebrain of neonatal rats, we were able to achieve widespread, robust α-synuclein expression with preferential expression in the frontal cortex. These animals displayed a progressive emergence of hyper-locomotion and dysregulated response to the dopaminergic agonist apomorphine. The animals receiving the α-synuclein vector displayed significant α-synuclein pathology including intra-cellular inclusion bodies, axonal pathology and elevated levels of phosphorylated α-synuclein, accompanied by significant loss of cortical neurons and a progressive reduction in both cortical and striatal ChAT positive interneurons. Furthermore, we found evidence of α-synuclein sequestered by IBA-1 positive microglia, which was coupled with a distinct change in morphology. In areas of most prominent pathology, the total α-synuclein levels were increased to, on average, two-fold, which is similar to the levels observed in patients with SNCA gene triplication, associated with cortical Lewy body pathology. This study provides a novel rat model of progressive cortical synucleinopathy, showing for the first time that cholinergic interneurons are vulnerable to α-synuclein over-expression. This animal model provides a powerful new tool for studies of neuronal degeneration in conditions of widespread cortical α-synuclein pathology, such as DLB, as well an attractive model for the exploration of novel biomarkers.


Assuntos
Neurônios Colinérgicos/patologia , Dependovirus/genética , Progressão da Doença , Interneurônios/patologia , Doença por Corpos de Lewy/patologia , Prosencéfalo/metabolismo , alfa-Sinucleína/genética , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Axônios/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Feminino , Vetores Genéticos/genética , Humanos , Interneurônios/efeitos dos fármacos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/fisiopatologia , Microglia/efeitos dos fármacos , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/patologia , Fenótipo , Gravidez , Prosencéfalo/patologia , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA