Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29403307

RESUMO

The North American plant Cimicifuga racemosa, also known as black cohosh (BC), is a herb that recently has gained attention for its hormonal effects. As the usage of hormone replacement therapy is declining due to its adverse effects in women with cancer, many are turning to herbal remedies like BC to treat menopausal symptoms. It is crucial to determine whether the effects of BC involve estrogen receptor-alpha (ERα). Previous studies from our laboratory have shown ERα to be a possible molecular target for BC. In this study, we examined the effects of BC (8% triterpene glycosides) alone and in combination with hormones and antihormones on the cellular viability, expression of ERα and progesterone receptor (PR)-A/B, and cytolocalization of ERα in ER (+) and PR-A/B (+) T-47D breast cancer cells. Cells were cultured and proteins were extracted and quantified. Western blot analysis revealed alterations in the expression of ERα and PR after treatment with BC (5-100 µM). BC induced a concentration-dependent decrease in ERα and PR protein levels when compared to the control. Image cytometric analysis with propidium iodide staining was used to enumerate changes in T-47D cell number and viability. A decrease in T-47D cell viability was observed upon treatment with 5-100 µM BC. The ideal concentration of BC (100 µM) was used in combination with hormones and antihormones in an effort to further understand the possible similarities between this compound and other known effectors of ERα and PR. After a 24-hour concomitant treatment with and/or in combination of BC, estradiol, ICI 182, 780, and Tamoxifen, downregulation of ERα and PR protein levels was observed. Delineating the role of BC in the regulation of ERα, PR, as well as its mechanisms of action, may be important in understanding the influence of BC on hormone receptors in breast cancer.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28331366

RESUMO

Curcumin (CUR) is a compound that has antibacterial, antiviral, anti-inflammatory, and anticancer properties. In this study, we have analyzed the effects of CUR on the expression of ERα and p53 in the presence of hormones and anti-hormones in breast cancer cells. Cells were cultured in a medium containing charcoal-stripped fetal bovine serum to deplete any endogenous steroids and treated with CUR at varying concentrations or in combination with hormones and anti-hormones. Protein analysis revealed a relative decrease in the levels of p53 and ERα upon treatment with 5-60 µM CUR. In cell proliferation studies, CUR alone caused a 10-fold decrease compared with the treatment with estrogen, which suggests its antiproliferative effects. Delineating the role of CUR in the regulation of p53, ERα, and their mechanisms of action may be important in understanding the influence of CUR on tumor suppressors and hormone receptors in breast cancer.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28579831

RESUMO

It has been reported that phytoestrogen epigallocatechin gallate (EGCG) suppresses cancer cell proliferation and may have antitumor properties. In this study, we analyzed the effects of EGCG on estrogen receptor α (ERα) and progesterone receptor in hormone-dependent T-47D breast cancer cells. Western blot analysis revealed EGCG induced a concentration-dependent decrease in ERα protein levels, with a 56% reduction occurring with 60 µM EGCG when compared to controls. Downregulation of ERα protein levels was observed after 24-hour co-treatment of T-47D cells with 60 µM EGCG and 10 nM 17ß-estradiol (E2). The proliferative effect of E2 on cell viability was reversed when treated in combination with EGCG. In contrast, the combination of EGCG with the pure ER antagonist, ICI 182, 780, showed no further reduction in cell number as only 5% of the cells were viable after 6 days of treatment. These studies may provide further understanding of the interactions among flavonoids and steroid receptors in breast cancer cells.

4.
Biores Open Access ; 6(1): 141-150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098120

RESUMO

The atrial natriuretic peptide (ANP) hormone is secreted by cardiac atrial myocytes and acts to regulate blood pressure homeostasis in humans. Previous research indicates ANP treatment significantly decreases the proliferation of human prostate cancer cells, pancreatic adenocarcinoma, and breast cancer cells. Minimal studies have been conducted with regard to ANP regulating tumor suppressor genes and steroid hormone receptors in breast cancer cells. Our study analyzed the effects of ANP in combination with 17ß-estradiol (E2) and antiestrogen treatments on p53 and ERα levels in T-47D breast cancer cells. Preliminary studies through Western blot analysis showed that ANP treatment decreases p53 and ERα expression levels in a concentration-dependent (10-100 nM) manner. Treatment with ANP alone, at a 100 nM concentration, causes a decrease of p53 and ERα expression compared with Cs (control stripped), but with E2 and antiestrogen combinations, expression of both protein levels decreased compared with treatments without ANP. Combined treatment with E2, an estrogen antagonist, and ANP decreased cellular proliferation compared with treatments without ANP, except in the case of raloxifene (RAL). Our studies indicate that ANP has potential as a therapeutic breast cancer treatment and should inspire further studies on the molecular mechanism of ANP in T-47D breast cancer cells.

5.
Genes Cancer ; 7(11-12): 414-425, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28191286

RESUMO

Resveratrol (RES) is a natural antioxidant found abundantly in grapes, peanuts, and berries, and is known to possess anti-tumorigenic properties. However, there is a noticeable lack of studies on the mechanistic effects of Resveratrol on tumor suppressors. Previous studies from our laboratory have shown the tumor suppressor protein p53 and estrogen receptor-alpha (ERα) to be possible molecular targets for RES. In this study, the anti-estrogenic effects of RES were analyzed on the expression of ERα and p53. The breast cancer cells grown in stripped serum were treated with 60 µM RES, as the optimum concentration based on data obtained from a concentration study using 1-100 µM RES. Our studies indicate that RES caused a decrease in the levels of protein expression of p53 and ERα as compared to the control. Increasing concentrations of RES caused a four-fold decrease in cell number in comparison to estradiol. RES, in conjunction with ICI 182,780 (ICI), caused a down-regulation of both p53 and ERα as compared to the control. These observed effects on cell proliferation and regulation of both p53 and ERα by RES may lead to further understanding of the relationship between tumor suppressor proteins and steroid receptors in breast cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA