Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
ACS Food Sci Technol ; 4(4): 895-904, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38660051

RESUMO

The climate crisis further exacerbates the challenges for food production. For instance, the increasingly unpredictable growth of fungal species in the field can lead to an unprecedented high prevalence of several mycotoxins, including the most important toxic secondary metabolite produced by Fusarium spp., i.e., deoxynivalenol (DON). The presence of DON in crops may cause health problems in the population and livestock. Hence, there is a demand for advanced strategies facilitating the detection of DON contamination in cereal-based products. To address this need, we introduce infrared attenuated total reflection (IR-ATR) spectroscopy combined with advanced data modeling routines and optimized sample preparation protocols. In this study, we address the limited exploration of wheat commodities to date via IR-ATR spectroscopy. The focus of this study was optimizing the extraction protocol for wheat by testing various solvents aligned with a greener and more sustainable analytical approach. The employed chemometric method, i.e., sparse partial least-squares discriminant analysis, not only facilitated establishing robust classification models capable of discriminating between high vs low DON-contaminated samples adhering to the EU regulatory limit of 1250 µg/kg but also provided valuable insights into the relevant parameters shaping these models.

2.
J Biophotonics ; 16(10): e202300049, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37439117

RESUMO

Infrared instruments with smaller and cost-effective components such as bandpass filters, single channel detectors, and laser-based light sources are being developed to provide cheaper and faster analysis of biological samples. Such instruments often provide measurements in form of sparse data, which include a collection of single-frequency channels or a collection of channels covering very narrow spectral ranges, called here multi-frequency channels. To keep costs low, the number of channels needs to be kept at a minimum. However, modelling and preprocessing of sparse data needs enough channels to perform the task. The aim of this study therefore was to understand the effect of channels sampling on data modelling results and find optimal modelling algorithm for different type of sparse data. The sparse data was simulated using Fourier Transform Infrared spectra of milk and fungi. Regression models were established to predict fatty acid composition by partial least squares regression (PLSR), multiple linear regression (MLR) and random forest (RF) methods. We observe that PLSR algorithm is very well suited for sparse data such as multi-frequency channels: excellent calibration models were obtained with only three channels comprising three wavenumbers each. The results were comparable to results obtained with full spectra. MLR and RF in turn provided similarly good results using data with single-frequency channels requiring nine channels in total.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA