Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Biochem J ; 478(23): 4137-4149, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34796899

RESUMO

Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA). A previous crystal structure of an ODC-APA complex indicated that APA non-covalently binds ODC and its cofactor pyridoxal 5-phosphate (PLP) and functions by competing with the ODC substrate ornithine for binding to the catalytic site. We have revisited the mechanism of APA binding and ODC inhibition through a new crystal structure of APA-bound ODC, which we solved at 2.49 Šresolution. The structure unambiguously shows the presence of a covalent oxime between APA and PLP in the catalytic site, which we confirmed in solution by mass spectrometry. The stable oxime makes extensive interactions with ODC but cannot be catabolized, explaining APA's high potency in ODC inhibition. In addition, we solved an ODC/PLP complex structure with citrate bound at the substrate-binding pocket. These two structures provide new structural scaffolds for developing more efficient pharmaceutical ODC inhibitors.


Assuntos
Inibidores da Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/metabolismo , Propilaminas/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos
2.
J Am Chem Soc ; 138(39): 12975-12980, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27617631

RESUMO

A stereocontrolled first total synthesis of muraymycin D1 (1) has been achieved. The synthetic route is highly stereoselective, featuring (1) selective ß-ribosylation of the C2-methylated amino ribose, (2) selective Strecker reaction, and (3) ring-opening reaction of a diastereomeric mixture of a diaminolactone to synthesize muraymycidine (epi-capreomycidine). The acid-cleavable protecting groups for secondary alcohol and uridine ureido nitrogen are applied for simultaneous deprotections with the Boc and tBu groups. Muraymycin D1 (1) and its amide derivatives (2 and 3) exhibited growth inhibitory activity against Mycobacterium tuberculosis (MIC50 = 1.56-6.25 µg/mL) and strong enzyme inhibitory activities against the bacterial phosphotransferases (MurX and WecA) (IC50 = 0.096-0.69 µM).


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Peptídeos/síntese química , Peptídeos/farmacologia , Antibacterianos/química , Técnicas de Química Sintética , Testes de Sensibilidade Microbiana , Peptídeos/química , Estereoisomerismo
3.
Microbiol Spectr ; 12(1): e0367723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078724

RESUMO

IMPORTANCE: MmpL3 is a protein that is required for the survival of bacteria that cause tuberculosis (TB) and nontuberculous mycobacterial (NTM) infections. This report describes the discovery and characterization of a new small molecule, MSU-43085, that targets MmpL3 and is a potent inhibitor of Mycobacterium tuberculosis (Mtb) and M. abscessus survival. MSU-43085 is shown to be orally bioavailable and efficacious in an acute model of Mtb infection. However, the analog is inactive against Mtb in chronically infected mice. Pharmacokinetic and metabolite identification studies identified in vivo metabolism of MSU-43085, leading to a short half-life in treated mice. These proof-of-concept studies will guide further development of the MSU-43085 series for the treatment of TB or NTM infections.


Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas
4.
Int J Nanomedicine ; 19: 2639-2653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500681

RESUMO

Introduction: We previously identified niclosamide as a promising repurposed drug candidate for hepatocellular carcinoma (HCC) treatment. However, it is poorly water soluble, limiting its tissue bioavailability and clinical application. To overcome these challenges, we developed an orally bioavailable self-microemulsifying drug delivery system encapsulating niclosamide (Nic-SMEDDS). Methods: Nic-SMEDDS was synthesized and characterized for its physicochemical properties, in vivo pharmacokinetics and absorption mechanisms, and in vivo therapeutic efficacy in an orthotopic patient-derived xenograft (PDX)-HCC mouse model. Niclosamide ethanolamine salt (NEN), with superior water solubility, was used as a positive control. Results: Nic-SMEDDS (5.6% drug load) displayed favorable physicochemical properties and drug release profiles in vitro. In vivo, Nic-SMEDDS displayed prolonged retention time and plasma release profile compared to niclosamide or NEN. Oral administration of Nic-SMEDDS to non-tumor bearing mice improved niclosamide bioavailability and Cmax by 4.1- and 1.8-fold, respectively, compared to oral niclosamide. Cycloheximide pre-treatment blocked niclosamide absorption from orally administered Nic-SMEDDS, suggesting that its absorption was facilitated through the chylomicron pathway. Nic-SMEDDS (100 mg/kg, bid) showed greater anti-tumor efficacy compared to NEN (200 mg/kg, qd); this correlated with higher levels (p < 0.01) of niclosamide, increased caspase-3, and decreased Ki-67 in the harvested PDX tissues when Nic-SMEDDS was given. Biochemical analysis at the treatment end-point indicated that Nic-SMEDDS elevated lipid levels in treated mice. Conclusion: We successfully developed an orally bioavailable formulation of niclosamide, which significantly enhanced oral bioavailability and anti-tumor efficacy in an HCC PDX mouse model. Our data support its clinical translation for the treatment of solid tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Xenoenxertos , Neoplasias Hepáticas/patologia , Emulsões/química , Sistemas de Liberação de Medicamentos , Solubilidade , Disponibilidade Biológica , Água , Lipídeos , Administração Oral
5.
Chemistry ; 19(41): 13847-58, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24014478

RESUMO

Capuramycin and its congeners are considered to be important lead molecules for the development of a new drug for multidrug-resistant (MDR) Mycobacterium tuberculosis infections. Extensive structure-activity relationship studies of capuramycin to improve the efficacy have been limited because of difficulties in selectively chemically modifying the desired position(s) of the natural product with biologically interesting functional groups. We have developed efficient syntheses of capuramycin and its analogues by using new protecting groups, derived from the chiral (chloro-4-methoxyphenyl)(chlorophenyl)methanols, for the uridine ureido nitrogen and primary alcohol. The chiral nonracemic (2,6-dichloro-4-methoxyphenyl)(2,4-dichlorophenyl)methanol derivative is a useful reagent to resolve rac-3-amino-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-one, the (S)-configuration isomer of which plays a significant role in improving the mycobactericidal activity of capuramycin.


Assuntos
Aminoglicosídeos/síntese química , Antituberculosos/síntese química , Mycobacterium/química , Aminoglicosídeos/química , Aminoglicosídeos/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Desenho de Fármacos , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
6.
Tetrahedron Lett ; 54(16): 2077-2081, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23908559

RESUMO

We have realized that N-formylations of free amines of some drug leads can improve PK/PD property of parent molecules without decreasing their biological activities. In order to selectively formylate primary amines of polyfunctional molecules, we have sought a mild and convenient formylation reaction. In our screening of N-formylation of an α-amino acid, L-phenylalanine, none of formylation conditions reported to date yielded the desired HCO-L-Phe-OH with satisfactory yield. N-Formylations of amino acids with HCO2H require the reactions in a water-containing media and suppress polymerization reactions due to the competitive reactions among carboxylic acids. We found that N-formylations of α-amino acids could be achieved with a water-soluble peptide coupling additive, an oxyma derivative, (2,2-dimethyl-1,3-dioxolan-4-yl)methyl-2-cyano-2-(hydroxyimino)acetate (2), EDCI, and NaHCO3 in water or a mixture of water and DMF system, yielding N-formylated α-amino acids with excellent yields. Moreover, these conditions could selectively formylate primary amines over secondary amines at a controlled temperature. A usefulness of these conditions was demonstrated by selective formylation of daptomycin antibiotic which contains three different amino groups.

7.
J Org Chem ; 77(8): 3859-67, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22458337

RESUMO

One of the key constituents of the muraymycins is the 6-membered cyclic guanidine, (2S,3S)-muraymycidine (or epi-capreomycidine). In order to diversify the structure of the oligopeptide moiety of the muraymycins for thorough structure-activity relationship studies, we have developed a highly stereoselective synthesis of ureidomuraymycidine derivatives with the lactone 4a.


Assuntos
Antibacterianos/química , Antibacterianos/síntese química , Arginina/análogos & derivados , Nucleosídeos/química , Nucleosídeos/síntese química , Peptídeos/química , Peptídeos/síntese química , Ureia/análogos & derivados , Ureia/química , Antibacterianos/farmacologia , Arginina/síntese química , Arginina/química , Arginina/farmacologia , Estrutura Molecular , Nucleosídeos/farmacologia , Peptídeos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
8.
Tetrahedron Lett ; 53(29): 3758-3762, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22711944

RESUMO

The benzyloxymethyl (BOM) group has been utilized widely in syntheses of a variety of natural and non-natural products. The BOM group is also one of few choices to protect uridine ureido nitrongen. However, hydrogenolytic cleavage of the BOM group of uridine derivatives has been unrealizably performed via heterogeneous conditions using Pd catalysts. One of the undesirable by-products formed by Pd-mediated hydrogenation conditions is the over-reduced product of which the C5-C6 double bond of the uracil moiety was saturated. To date, we have generated a wide range of uridine-containing antibacterial agents, where the BOM group has been utilized in their syntheses. In screening of deprotection conditions of the BOM group of uridine ureido nitrogen under Pd-mediated hydrogenation conditions, we realized that the addition of water to the (i)PrOH-based hydrogenation conditions can suppress the formation of over-reduced uridine derivatives and the addition of HCO(2)H (0.5%) dramatically improve the reaction rate. An optimized hydrogenation condition described here can be applicable to the BOM-deprotections of a wide range of uridine derivatives.

9.
Cancers (Basel) ; 13(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34638488

RESUMO

(1) Background: Notwithstanding numerous therapeutic advances, 176,000 deaths from breast and lung cancers will occur in the United States in 2021 alone. The tumor microenvironment and its modulation by drugs have gained increasing attention and relevance, especially with the introduction of immunotherapy as a standard of care in clinical practice. Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and upon ligand binding, function as transcription factors to modulate multiple cell functions. Bexarotene, the only FDA-approved RXR agonist, is still used to treat cutaneous T-cell lymphoma. (2) Methods: To test the immunomodulatory and anti-tumor effects of MSU42011, a new RXR agonist, we used two different immunocompetent murine models (MMTV-Neu mice, a HER2 positive model of breast cancer and the A/J mouse model, in which vinyl carbamate is used to initiate lung tumorigenesis) and an immunodeficient xenograft lung cancer model. (3) Results: Treatment of established tumors in immunocompetent models of HER2-positive breast cancer and Kras-driven lung cancer with MSU42011 significantly decreased the tumor burden and increased the ratio of CD8/CD4, CD25 T cells, which correlates with enhanced anti-tumor efficacy. Moreover, the combination of MSU42011 and immunotherapy (anti-PDL1 and anti-PD1 antibodies) significantly (p < 0.05) reduced tumor size vs. individual treatments. However, MSU42011 was ineffective in an athymic human A549 lung cancer xenograft model, supporting an immunomodulatory mechanism of action. (4) Conclusions: Collectively, these data suggest that the RXR agonist MSU42011 can be used to modulate the tumor microenvironment in breast and lung cancer.

10.
ACS Chem Biol ; 15(1): 52-62, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31556993

RESUMO

Mycobacterium tuberculosis (Mtb) possesses a two-component regulatory system, DosRST, that enables Mtb to sense host immune cues and establish a state of nonreplicating persistence (NRP). NRP bacteria are tolerant to several antimycobacterial drugs in vitro and are thought to play a role in the long course of tuberculosis therapy. Previously, we reported the discovery of six novel chemical inhibitors of DosRST, named HC101A-106A, from a whole cell, reporter-based phenotypic high throughput screen. Here, we report functional and mechanism of action studies of HC104A and HC106A. RNaseq transcriptional profiling shows that the compounds downregulate genes of the DosRST regulon. Both compounds reduce hypoxia-induced triacylglycerol synthesis by ∼50%. HC106A inhibits Mtb survival during hypoxia-induced NRP; however, HC104A did not inhibit survival during NRP. An electrophoretic mobility assay shows that HC104A inhibits DosR DNA binding in a dose-dependent manner, indicating that HC104A may function by directly targeting DosR. In contrast, UV-visible spectroscopy studies suggest HC106A directly targets the sensor kinase heme, via a mechanism that is distinct from the oxidation and alkylation of heme previously observed with artemisinin (HC101A). Synergistic interactions were observed when DosRST inhibitors were examined in pairwise combinations with the strongest potentiation observed between artemisinin paired with HC102A, HC103A, or HC106A. Our data collectively show that the DosRST pathway can be inhibited by multiple distinct mechanisms.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , DNA/química , Heme/metabolismo , Mycobacterium tuberculosis/genética , Inibidores de Proteínas Quinases/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Avaliação Pré-Clínica de Medicamentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homeostase , Estrutura Molecular , Mycobacterium tuberculosis/enzimologia , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade
11.
Sci Rep ; 10(1): 22244, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335263

RESUMO

Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia. Here, we used a previously validated screening paradigm to evaluate 23 novel rexinoids for biomarkers related to efficacy and safety. These biomarkers include suppression of inducible nitric oxide synthase (iNOS) and induction of sterol regulatory element-binding protein (SREBP). Because of its potent iNOS suppression, low SREBP induction, and activation of RXR, MSU-42011 was selected as our lead compound. We next used MSU-42011 to treat established tumors in a clinically relevant Kras-driven mouse model of lung cancer. KRAS is one of the most common driver mutations in human lung cancer and correlates with aggressive disease progression and poor patient prognosis. Ultrasound imaging was used to detect and monitor tumor development and growth over time in the lungs of the A/J mice. MSU-42011 markedly decreased the tumor number, size, and histopathology of lung tumors compared to the control and bexarotene groups. Histological sections of lung tumors in mice treated with MSU-42011 exhibited reduced cell density and fewer actively proliferating cells compared to the control and bexarotene-treated tumors. Although bexarotene significantly (p < 0.01) elevated plasma triglycerides and cholesterol, treatment with MSU-42011 did not increase these biomarkers, demonstrating a more favorable toxicity profile in vivo. The combination of MSU-42011 and carboplatin and paclitaxel reduced macrophages in the lung and increased activation markers of CD8+T cells compared to the control groups. Our results validate our screening paradigm for in vitro testing of novel rexinoids and demonstrate the potential for MSU-42011 to be developed for the treatment of KRAS-driven lung cancer.


Assuntos
Anticarcinógenos/farmacologia , Carcinógenos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores X de Retinoides/agonistas , Tetra-Hidronaftalenos/farmacologia , Animais , Anticarcinógenos/química , Apoptose/efeitos dos fármacos , Bexaroteno/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Imunomodulação/efeitos dos fármacos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Camundongos , Estrutura Molecular , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Tetra-Hidronaftalenos/química , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Org Lett ; 14(18): 4910-3, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22937741

RESUMO

Oxyma and an oxyma derivative, (2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-cyano-2-(hydroxyimino)acetate (5b), displayed a remarkable effect on selective esterifications of primary alcohols. A wide range of carboxylic acids could be esterified with primary alcohols by using EDCI, NaHCO(3), and Oxyma or Oxyma derivative 5b in 5% H(2)O-CH(3)CN. Oxyma derivative 5b is particularly useful, since it could be removed after the reaction via a simple basic or an acidic aqueous workup procedure.


Assuntos
Acetatos/química , Álcoois/química , Oximas/química , Água/química , Esterificação , Estrutura Molecular , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA