Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 38(4): 437-9, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23455094

RESUMO

As manifested in the similarity relation of diffuse light transport, it is difficult to assess single scattering characteristics from multiply scattered light. We take advantage of the limited validity of the diffusion approximation of light transport and demonstrate, experimentally and numerically, that even deep into the multiple scattering regime, time-resolved detection of transmitted light allows simultaneous assessment of both single scattering anisotropy and scattering mean free path, and therefore also macroscopic parameters like the diffusion constant and the transport mean free path. This is achieved via careful assessment of early light and matching against Monte Carlo simulations of radiative transfer.

2.
J Magn Reson ; 206(1): 59-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20594881

RESUMO

Specific parameters of the neuronal tissue microstructure, such as axonal diameters, membrane permeability and intracellular water fractions are assessable using diffusion MRI. These parameters are commonly estimated using analytical models, which may introduce bias in the estimated parameters due to the approximations made when deriving the models. As an alternative to using analytical models, a database of signal curves generated by fast Monte Carlo simulations can be employed. Simulated diffusion MRI measurements were generated and evaluated using the two-compartment Kärger model as well as the simulation model based on a database containing signal curves from approximately 60000 simulations performed with different combinations of microstructural parameters. A protocol based on a pulsed gradient spin echo sequence with diffusion times of 30 and 60 ms and with gradient amplitudes obtainable with a clinical MRI scanner was employed for the investigations. When using the analytical model, a major negative bias (up to approximately 25%) in the estimated intracellular volume fraction was observed for short exchange times, while almost no bias was seen for the simulation model. In general, the simulation model improved the accuracy of the estimated parameters as compared to the analytical model, except for the exchange time parameter.


Assuntos
Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Método de Monte Carlo , Algoritmos , Células/ultraestrutura , Simulação por Computador , Difusão , Membranas , Modelos Estatísticos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA