Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 196(1): 162-172, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22775349

RESUMO

• Increasing atmospheric concentrations of phytotoxic ozone (O(3) ) can constrain growth and carbon sink strength of forest trees, potentially exacerbating global radiative forcing. Despite progress in the conceptual understanding of the impact of O(3) on plants, it is still difficult to detect response patterns at the leaf level. • Here, we employed principal component analysis (PCA) to analyse a database containing physiological leaf-level parameters of 60-yr-old Fagus sylvatica (European beech) trees. Data were collected over two climatically contrasting years under ambient and twice-ambient O(3) regimes in a free-air forest environment. • The first principal component (PC1) of the PCA was consistently responsive to O(3) and crown position within the trees over both years. Only a few of the original parameters showed an O(3) effect. PC1 was related to parameters indicative of oxidative stress signalling and changes in carbohydrate metabolism. PC1 correlated with cumulative O(3) uptake over preceding days. • PC1 represents an O(3) -responsive multivariate pattern detectable in the absence of consistently measurable O(3) effects on individual leaf-level parameters. An underlying effect of O(3) on physiological processes is indicated, providing experimental confirmation of theoretical O(3) response patterns suggested previously.


Assuntos
Fagus/efeitos dos fármacos , Fagus/fisiologia , Ozônio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Análise de Variância , Europa (Continente) , Fagus/crescimento & desenvolvimento , Conceitos Meteorológicos , Análise Multivariada , Ozônio/metabolismo , Análise de Componente Principal , Estações do Ano
2.
Tree Physiol ; 28(5): 713-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316303

RESUMO

We quantified ascorbate, glutathione and alpha-tocopherol in fine roots of mature Fagus sylvatica L. under free-air canopy ozone (O(3)) exposure (twice ambient O(3) concentration, 2x[O(3)]) during two growing seasons that differed in the extent of summer drought (exceptional drought year 2003, average year 2004). This design allowed us to test whether O(3) exposure or drought, or both, affected root antioxidants during the growing season. In both years, root ascorbate and alpha-tocopherol showed a similar relationship with volumetric soil water content (SWC): ascorbate concentrations on a root dry mass basis increased from about 6 to 12 micromol g(-1) when SWC dropped from 25 to 20%, and a-tocopherol increased from 100 to 150 nmol g(-1) at SWC values below 20%. Root glutathione showed no relationship with SWC or differences between the dry and the average year, but it was significantly and consistently diminished by 2x[O(3)]. Our results were inconclusive as to whether shoot-root translocation of glutathione or glutathione production in the roots was diminished. Phloem glutathione concentrations in the canopy remained constant, but reduced transport velocity in the phloem and, as a consequence, reduced mass flow of glutathione cannot be ruled out.


Assuntos
Antioxidantes/metabolismo , Desastres , Fagus/efeitos dos fármacos , Ozônio/farmacologia , Raízes de Plantas/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Fagus/crescimento & desenvolvimento , Fagus/metabolismo , Glutationa/metabolismo , Floema/efeitos dos fármacos , Floema/crescimento & desenvolvimento , Floema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , alfa-Tocoferol/metabolismo
3.
Environ Pollut ; 154(2): 241-53, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18031879

RESUMO

The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2xO3), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate.


Assuntos
Poluentes Atmosféricos/toxicidade , Antioxidantes/análise , Ozônio/toxicidade , Picea/química , Estações do Ano , Ecologia/métodos , Alemanha , Glutationa/análise , Oxirredução , Folhas de Planta/química , Brotos de Planta/química , Chuva , Temperatura
4.
Tree Physiol ; 34(12): 1388-98, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25430884

RESUMO

Climatic change causes gradual deforestation, partly through forest fires. However, fire has not been seen as an oxidative stressor on surviving forest trees. In addition, discrimination of stress-induced responses from acclimation steps cannot be examined under prolonged stress. Thus, four young Brutian pine (Pinus brutia Ten.) trees, a fire-related species, were subjected to a simulation of a crown-fire event to evaluate its impact on the availability of soluble carbon (C) and nitrogen (N) and the redox status near fire-afflicted tissue. Total soluble sugars, amino acids and non-structural (NS) proteins in needles and phloem, the antioxidant ascorbic acid (AsA) and reactive oxygen species (ROS) in needles were investigated together with the phloem transport velocity. To examine the temporal progress of these parameters, samples were obtained prior to fire (pre-fire), 2 h after fire, the following day (Day 1) and the following week (Week 1). Findings were categorized into shock reactions (2 h) and acclimation steps. Phloem transport accelerated 2 h postfire by almost 30% and correlated negatively to phloem sugars. At the same time the phloem ratio of sugars/amino acids correlated negatively to needle ROS. The trees' main response at 2 h and particularly on Day 1 was a massive increase in phloem NS proteins. The acclimation process involved also significant increases in needle NS proteins and AsA, as well as significant depletion of phloem amino acids by 65% by Week 1. The highest availability of soluble C and N was recorded on Day 1 in the phloem. Regression models explained significantly the variability of most soluble compounds postfire. Our findings suggest sink control over the source and an advanced role of phloem transport in defense processes.


Assuntos
Adaptação Fisiológica , Carbono/metabolismo , Incêndios , Nitrogênio/metabolismo , Floema/fisiologia , Pinus/fisiologia , Estresse Fisiológico , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Transporte Biológico , Mudança Climática , Oxirredução , Estresse Oxidativo , Fotossíntese , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Árvores/fisiologia
5.
Tree Physiol ; 33(10): 1030-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24200584

RESUMO

Aleppo pine (Pinus halepensis Mill.) is a pioneer species, highly competitive due to exceptional resistance to drought. To investigate the stress resistance in the first and second year of development, a steady-state drought experiment was implemented. Photosynthesis (A(net)), stomatal conductance and transpiration (E) were measured on three different sampling dates together with phloem soluble sugars, amino acids and non-structural proteins. Needle ascorbic acid (AsA) and reactive oxygen species were measured to evaluate the seedlings' drought stress condition in the final sampling. Drought impaired A(net) and E by 35 and 31%, respectively, and increased AsA levels up to 10-fold, without significant impact on the phloem metabolites. Phloem sugars related to temperature fluctuations rather than soil moisture and did not relate closely to A(net) levels. Sugars and proteins decreased between the second and third sampling date by 56 and 61%, respectively, and the ratio of sugars to amino acids decreased between the first and third sampling by 81%, while A(net) and water-use efficiency (A(net)/E) decreased only in the older seedlings. Although gas exchange was higher in the older seedlings, ascorbic acid and phloem metabolites were higher in the younger seedlings. It was concluded that the drought stress responses depended significantly on developmental stage, and research on the physiology of Aleppo pine regeneration should focus more on temperature conditions and the duration of drought than its severity.


Assuntos
Adaptação Fisiológica , Secas , Pinus/fisiologia , Desenvolvimento Vegetal , Plântula/fisiologia , Estresse Fisiológico , Água , Aminoácidos/metabolismo , Ácido Ascórbico/metabolismo , Metabolismo dos Carboidratos , Gases/metabolismo , Floema/metabolismo , Fotossíntese , Pinus/crescimento & desenvolvimento , Pinus/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA