Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 140: 63-71, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35817655

RESUMO

Axon growth enables the rapid wiring of the central nervous system. Understanding this process is a prerequisite to retriggering it under pathological conditions, such as a spinal cord injury, to elicit axon regeneration. The last decades saw progress in understanding the mechanisms underlying axon growth. Most of these studies employed cultured neurons grown on flat surfaces. Only recently studies on axon growth were performed in 3D. In these studies, physiological environments exposed more complex and dynamic aspects of axon development. Here, we describe current views on axon growth and highlight gaps in our knowledge. We discuss how axons interact with the extracellular matrix during development and the role of the growth cone and its cytoskeleton within. Finally, we propose that the time is ripe to study axon growth in a more physiological setting. This will help us uncover the physiologically relevant mechanisms underlying axon growth, and how they can be reactivated to induce axon regeneration.


Assuntos
Axônios , Regeneração Nervosa , Axônios/fisiologia , Neurônios , Sistema Nervoso Central , Neurogênese/fisiologia , Cones de Crescimento
2.
Neuron ; 111(8): 1241-1263.e16, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36796357

RESUMO

Cortical projection neurons polarize and form an axon while migrating radially. Even though these dynamic processes are closely interwoven, they are regulated separately-the neurons terminate their migration when reaching their destination, the cortical plate, but continue to grow their axons. Here, we show that in rodents, the centrosome distinguishes these processes. Newly developed molecular tools modulating centrosomal microtubule nucleation combined with in vivo imaging uncovered that dysregulation of centrosomal microtubule nucleation abrogated radial migration without affecting axon formation. Tightly regulated centrosomal microtubule nucleation was required for periodic formation of the cytoplasmic dilation at the leading process, which is essential for radial migration. The microtubule nucleating factor γ-tubulin decreased at neuronal centrosomes during the migratory phase. As distinct microtubule networks drive neuronal polarization and radial migration, this provides insight into how neuronal migratory defects occur without largely affecting axonal tracts in human developmental cortical dysgeneses, caused by mutations in γ-tubulin.


Assuntos
Neurônios , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Neurônios/fisiologia , Axônios/metabolismo , Microtúbulos/metabolismo , Centrossomo , Encéfalo/metabolismo
3.
J Vis Exp ; (176)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34723948

RESUMO

During neuronal development, axons navigate the cortical environment to reach their final destinations and establish synaptic connections. Growth cones -the sensory structures located at the distal tips of developing axons- execute this process. Studying the structure and dynamics of the growth cone is crucial to understanding axonal development and the interactions with the surrounding central nervous system (CNS) that enable it to form neural circuits. This is essential when devising methods to reintegrate axons into neural circuits following injury in fundamental research and pre-clinical contexts. Thus far, the general understanding of growth cone dynamics is primarily founded on studies of neurons cultured in two dimensions (2D). Although undoubtedly fundamental to the current knowledge of growth cone structural dynamics and response to stimuli, 2D studies misrepresent the physiological three-dimensional (3D) environment encountered by neuronal growth cones in intact CNS tissue. More recently, collagen gels were employed to overcome some of these limitations, enabling the investigation of neuronal development in 3D. However, both synthetic 2D and 3D environments lack signaling cues within CNS tissue, which direct the extension and pathfinding of developing axons. This protocol provides a method for studying axons and growth cones using organotypic brain slices, where developing axons encounter physiologically relevant physical and chemical cues. By combining fine-tuned in utero and ex utero electroporation to sparsely deliver fluorescent reporters along with super-resolution microscopy, this protocol presents a methodological pipeline for the visualization of axon and growth cone dynamics in situ. Furthermore, a detailed toolkit description of the analysis of long-term and live-cell imaging data is included.


Assuntos
Axônios , Cones de Crescimento , Axônios/fisiologia , Encéfalo , Sistema Nervoso Central , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA