Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38632902

RESUMO

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Assuntos
Dissulfetos , Estresse Oxidativo , PPAR gama , Tirosina/análogos & derivados , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Animais , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Neurônios/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Poríferos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Glutationa/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
2.
World J Microbiol Biotechnol ; 40(5): 148, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539025

RESUMO

Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) is the main causal agent of chestnut brown rot on sweet chestnut worldwide. The rotting of nuts leads to alterations in the organoleptic qualities and decreased fruit production, resulting in significant economic losses. In 2021, there was an important outbreak of chestnut rot in southern Galicia (Spanish northwest). The profile of secondary metabolites from G. smithogilvyi was studied, especially to determine its capability for producing mycotoxins, as happens with other rotting fungi, due to the possible consequences on the safety of chestnut consumption. Secondary metabolites produced by isolates of G. smithogilvyi growing in potato dextrose agar (PDA) medium were identified using liquid chromatography coupled with high-resolution mass spectrometry. Three metabolites with interesting pharmacological and phyto-toxicological properties were identified based on their exact mass and fragmentation patterns, namely adenosine, oxasetin, and phytosphingosine. The capacity of G. smithogilvyi to produce adenosine in PDA cultures was assessed, finding concentrations ranging from 176 to 834 µg/kg. Similarly, the production of mycotoxins was ruled out, indicating that the consumption of chestnuts with necrotic lesions does not pose a health risk to the consumer in terms of mycotoxins.


Assuntos
Ascomicetos , Micotoxinas , Nozes , Adenosina , Meios de Cultura
3.
Mar Drugs ; 21(8)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37623732

RESUMO

The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.


Assuntos
Antozoários , Produtos Biológicos , Doença de Parkinson , Idoso , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Bandagens , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neurônios Dopaminérgicos
4.
Exp Cell Res ; 400(2): 112514, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582093

RESUMO

Cardiovascular diseases and atherosclerosis are currently some of the most widespread diseases of our time. Within cardiovascular disease, coronary artery disease and underlying atherosclerosis were recently linked with systemic and local inflammation. Cyclophilins participate in the initiation and progression of these inflammatory-related diseases. Cyclophilins are released into the extracellular space upon inflammatory stimuli and participate in the pathology of cardiovascular diseases. The cell surface receptor for extracellular cyclophilins, the CD147 receptor, also contributes to coronary artery disease pathogenesis. Nevertheless, the physiological relevance of cyclophilin's family and their receptor in cardiovascular diseases remains unclear. The present study aimed to better understand the role of cyclophilins in cardiovascular artery disease and their relationship with inflammation. Hence, cyclophilins and pro-inflammatory interleukins were measured in the serum of 30 subjects (divided into three groups according to coronary artery disease status: 10 patients with acute coronary syndrome, 10 patients with chronic coronary artery disease, and 10 control volunteers). In addition, cyclophilin levels and CD147 receptor expression were measured in T lymphocytes purified from these subjects. Cyclophilin A, B, and C, pro-inflammatory interleukins, and CD147 membrane expression were significantly elevated in patients with coronary artery disease.


Assuntos
Basigina/metabolismo , Comunicação Celular , Doença da Artéria Coronariana/patologia , Ciclofilinas/metabolismo , Interleucinas/metabolismo , Linfócitos T/imunologia , Estudos de Casos e Controles , Doença da Artéria Coronariana/imunologia , Doença da Artéria Coronariana/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T/metabolismo
5.
Mar Drugs ; 20(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286475

RESUMO

Seaweeds are a great source of compounds with cytotoxic properties with the potential to be used as anticancer agents. This study evaluated the cytotoxic and proteasome inhibitory activities of 12R-hydroxy-bromosphaerol, 12S-hydroxy-bromosphaerol, and bromosphaerol isolated from Sphaerococcus coronopifolius. The cytotoxicity was evaluated on malignant cell lines (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, and SK-MEL-28) using the MTT and LDH assays. The ability of compounds to stimulate the production of hydrogen peroxide (H2O2) and to induce mitochondrial dysfunction, the externalization of phosphatidylserine, Caspase-9 activity, and changes in nuclear morphology was also studied on MCF-7 cells. The ability to induce DNA damage was also studied on L929 fibroblasts. The proteasome inhibitory activity was estimated through molecular docking studies. The compounds exhibited IC50 values between 15.35 and 53.34 µM. 12R-hydroxy-bromosphaerol and 12S-hydroxy-bromosphaerol increased the H2O2 levels on MCF-7 cells, and bromosphaerol induced DNA damage on fibroblasts. All compounds promoted a depolarization of mitochondrial membrane potential, Caspase-9 activity, and nuclear condensation and fragmentation. The compounds have been shown to interact with the chymotrypsin-like catalytic site through molecular docking studies; however, only 12S-hydroxy-bromosphaerol evidenced interaction with ALA20 and SER169, key residues of the proteasome catalytic mechanism. Further studies should be outlined to deeply characterize and understand the potential of those bromoditerpenes for anticancer therapeutics.


Assuntos
Antineoplásicos , Neuroblastoma , Rodófitas , Alga Marinha , Humanos , Inibidores de Proteassoma/farmacologia , Peróxido de Hidrogênio/farmacologia , Citotoxinas/farmacologia , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Fosfatidilserinas/farmacologia , Complexo de Endopeptidases do Proteassoma , Células CACO-2 , Caspase 9 , Quimotripsina/farmacologia , Rodófitas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose
6.
Pharmacol Res ; 168: 105589, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812007

RESUMO

The treatment of Parkinson´s disease (PD) has benefited from significant advances resulting from the increasing research efforts focused on new therapeutics. However, the current treatments for PD are mostly symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Thus, it is critical to find new molecules that can result in more effective treatments. Within this framework, this study aims to evaluate the neuroprotective and anti-inflammatory effects of three compounds (eleganolone, eleganonal and fucosterol) isolated from the brown seaweed Bifurcaria bifurcata. In vitro neuroprotective effects were evaluated on a PD cellular model induced by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, while lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages were used to evaluate the anti-inflammatory potential. Additionally, the underlying mechanisms of action were also investigated. Compounds were isolated by preparative chromatographic methods and their structural elucidation attained by NMR spectroscopy. Among the tested compounds, eleganolone (0.1-1 µM; 24 h) reverted the neurotoxicity induced by 6-OHDA in about 20%. The neuroprotective effects were mediated by mitochondrial protection, reduction of oxidative stress, inflammation and apoptosis, and inhibition of NF-kB pathway. The results suggest that eleganolone may provide advantages in the treatment of neurodegenerative conditions and, therefore, should be considered for future preclinical studies.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Citocinas/análise , Diterpenos/uso terapêutico , Humanos , Camundongos , Óxido Nítrico/biossíntese , Células RAW 264.7 , Alga Marinha/química , Fator de Transcrição RelA/metabolismo
7.
Int J Mol Sci ; 22(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672866

RESUMO

Parkinsons Disease (PD) is the second most common neurodegenerative disease worldwide, and is characterized by a progressive degeneration of dopaminergic neurons. Without an effective treatment, it is crucial to find new therapeutic options to fight the neurodegenerative process, which may arise from marine resources. Accordingly, the goal of the present work was to evaluate the ability of the monoterpenoid lactone Loliolide, isolated from the green seaweed Codium tomentosum, to prevent neurological cell death mediated by the neurotoxin 6-hydroxydopamine (6-OHDA) on SH-SY5Y cells and their anti-inflammatory effects in RAW 264.7 macrophages. Loliolide was obtained from the diethyl ether extract, purified through column chromatography and identified by NMR spectroscopy. The neuroprotective effects were evaluated by the MTT method. Cells' exposure to 6-OHDA in the presence of Loliolide led to an increase of cells' viability in 40%, and this effect was mediated by mitochondrial protection, reduction of oxidative stress condition and apoptosis, and inhibition of the NF-kB pathway. Additionally, Loliolide also suppressed nitric oxide production and inhibited the production of TNF-α and IL-6 pro-inflammatory cytokines. The results suggest that Loliolide can inspire the development of new neuroprotective therapeutic agents and thus, more detailed studies should be considered to validate its pharmacological potential.


Assuntos
Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Clorófitas/química , Lactonas/farmacologia , Monoterpenos/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Benzofuranos/química , Linhagem Celular Tumoral , Citocinas/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Humanos , Lactonas/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estrutura Molecular , Monoterpenos/química , NF-kappa B/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
8.
Molecules ; 26(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806445

RESUMO

Marine natural products have exhibited uncommon chemical structures with relevant antitumor properties highlighting their potential to inspire the development of new anticancer agents. The goal of this work was to study the antitumor activities of the brominated diterpene sphaerodactylomelol, a rare example of the dactylomelane family. Cytotoxicity (10-100 µM; 24 h) was evaluated on tumor cells (A549, CACO-2, HCT-15, MCF-7, NCI-H226, PC-3, SH-SY5Y, SK-ML-28) and the effects estimated by MTT assay. Hydrogen peroxide (H2O2) levels and apoptosis biomarkers (membrane translocation of phosphatidylserine, depolarization of mitochondrial membrane potential, Caspase-9 activity, and DNA condensation and/or fragmentation) were studied in the breast adenocarcinoma cellular model (MCF-7) and its genotoxicity on mouse fibroblasts (L929). Sphaerodactylomelol displayed an IC50 range between 33.04 and 89.41 µM without selective activity for a specific tumor tissue. The cells' viability decrease was accompanied by an increase on H2O2 production, a depolarization of mitochondrial membrane potential and an increase of Caspase-9 activity and DNA fragmentation. However, the DNA damage studies in L929 non-malignant cell line suggested that this compound is not genotoxic for normal fibroblasts. Overall, the results suggest that the cytotoxicity of sphaerodactylomelol seems to be mediated by an increase of H2O2 levels and downstream apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Diterpenos/farmacologia , Fibroblastos/efeitos dos fármacos , Rodófitas/química , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Proliferação de Células , Células Cultivadas , Dano ao DNA , Diterpenos/química , Feminino , Humanos , Peróxido de Hidrogênio/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos
9.
Cell Mol Neurobiol ; 40(4): 603-615, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31729596

RESUMO

Gracilins are diterpenes derivative, isolated from the marine sponge Spongionella gracilis. Natural gracilins and synthetic derivatives have shown antioxidant, immunosuppressive, and neuroprotective capacities related to the affinity for cyclophilins. The aim of this work was to study anti-inflammatory and immunosuppressive pathways modulated by gracilin L and two synthetic analogues, compound 1 and 2, on a cellular model of inflammation. In this way, the murine BV2 microglia cell line was used. To carry out the experiments, microglia cells were pre-treated with compounds for 1 h and then stimulated with lipopolysaccharide for 24 h to determine reactive oxygen species production, mitochondrial membrane potential, the release of nitric oxide, interleukin-6 and tumor necrosis factor-α and the expression of Nuclear factor-erythroid 2-related factor 2, Nuclear Factor-κB, the inducible nitric oxide synthase, and the cyclophilin A. Finally, a co-culture of neuron SH-SY5Y and microglia BV2 cells was used to check the neuroprotective effect of these compounds. Cyclosporine A was used as a control of effect. The compounds were able to decrease inflammatory mediators, the expression of inflammatory target proteins as well as they activated anti-oxidative mechanism upon inflammatory conditions. For this reason, natural and synthetic gracilins could be interesting for developing anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclosporina/farmacologia , Diterpenos/química , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
J Nat Prod ; 83(7): 2299-2304, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32628481

RESUMO

The chemical investigation of the sponge Stylissa aff. carteri collected around Futuna Islands in the Pacific Ocean led to the isolation of three new dimeric pyrrole 2-aminoimidazole alkaloids (PIAs). Futunamine (1) features an unprecedented pyrrolo[1,2-c]imidazole core, while two other new dimeric PIAs were identified as analogues of palau'amine. Together with other known PIAs isolated from this species, they were shown to exhibit anti-inflammatory and neuroprotective activities.


Assuntos
Alcaloides/química , Imidazóis/química , Pirróis/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular Tumoral , Humanos , Imidazóis/isolamento & purificação , Ilhas , Microglia/citologia , Microglia/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Oceano Pacífico , Pirróis/isolamento & purificação , Análise Espectral/métodos
11.
Molecules ; 25(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238492

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and is characterized by a progressive degeneration of the dopaminergic neurons in the substantianigra. Although not completely understood, several abnormal cellular events are known to be related with PD progression, such as oxidative stress, mitochondrial dysfunction and apoptosis. Accordingly, the aim of this study was to evaluate the neuroprotective effects of Codium tomentosum enriched fractions in a neurotoxicity model mediated by 6-hydroxydopamine (6-OHDA) on SH-SY5Y human cells, and the disclosure of their mechanisms of action. Additionally, a preliminary chemical screening of the most promising bioactive fractions of C. tomentosum was carried out by GC-MS analysis. Among the tested fractions, four samples exhibited the capacity to revert the neurotoxicity induced by 6-OHDA to values higher or similar to the vitamin E (90.11 ± 3.74% of viable cells). The neuroprotective effects were mediated by the mitigation of reactive oxygen species (ROS) generation, mitochondrial dysfunctions and DNA damage, together with the reduction of Caspase-3 activity. Compounds belonging to different chemical classes, such as terpenes, alcohols, carboxylic acids, aldehydes, esters, ketones, saturated and unsaturated hydrocarbons were tentatively identified by GC-MS. The results show that C. tomentosum is a relevant source of neuroprotective agents, with particular interest for preventive therapeutics.


Assuntos
Produtos Biológicos/farmacologia , Clorófitas/química , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Fracionamento Químico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson , Fenóis/química , Espécies Reativas de Oxigênio/metabolismo , Alga Marinha/química
12.
Mol Pharm ; 16(4): 1456-1466, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821469

RESUMO

The macrolide caniferolide A was isolated from extracts of a culture of the marine-derived actinomycete Streptomyces caniferus, and its ability to ameliorate Alzheimer's disease (AD) hallmarks was determined. The compound reduced neuroinflammatory markers in BV2 microglial cells activated with lipopolysaccharide (LPS), being able to block NFκB-p65 translocation to the nucleus and to activate the Nrf2 pathway. It also produced a decrease in pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), reactive oxygen species (ROS) and nitric oxide release and inhibited iNOS, JNK, and p38 activities. Moreover, the compound blocked BACE1 activity and attenuated Aß-activation of microglia by drastically diminishing ROS levels. The phosphorylated state of the tau protein was evaluated in SH-SY5Y tau441 cells. Caniferolide A reduced Thr212 and Ser214 phosphorylation by targeting p38 and JNK MAPK kinases. On the other side, the antioxidant properties of the macrolide were determined in an oxidative stress model with SH-SY5Y cells treated with H2O2. The compound diminished ROS levels and increased cell viability and GSH content by activating the nuclear factor Nrf2. Finally, the neuroprotective ability of the compound was confirmed in two trans-well coculture systems with activated BV2 cells (both with LPS and Aß) and wild type and transfected SH-SY5Y cells. The addition of caniferolide A to microglial cells produced a significant increase in the survival of neuroblastoma in both cases. These results indicate that the compound is able to target many pathological markers of AD, suggesting that caniferolide A could be an interesting drug lead for a polypharmacological approach to the illness.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Inflamação/prevenção & controle , Macrolídeos/farmacologia , Neuroblastoma/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Streptomyces/química , Proteínas tau/metabolismo , Animais , Técnicas In Vitro , Inflamação/metabolismo , Inflamação/patologia , Macrolídeos/química , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo
13.
Mar Drugs ; 17(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717087

RESUMO

Bifurcaria bifurcata is a marine brown seaweed mainly found on the Atlantic coast. Herein, we report the antioxidant and neuroprotective activities of seven fractions (F1⁻F7) obtained by normal phase chromatography from the B. bifurcata dichloromethane extract, as well as of its two major isolated diterpenes. Total phenolic content of fractions was determined by the Folin⁻Ciocalteu method, while antioxidant activity was evaluated by the DPPH, ORAC, and FRAP assays. Neuroprotective effects were evaluated in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y), while the mechanisms associated to neuroprotection were investigated by the determination of mitochondrial membrane potential, H2O2 production, Caspase-3 activity, and by observation of DNA fragmentation. Fractions F4 and F5 exhibited the best neuroprotective and antioxidant activities, respectively. F4 fraction prevented changes in mitochondrial potential, and induced a reduction of H2O2 levels production and an increase in cell viability, suggesting that it may contain multi-target compounds acting on different pathways. Hence, this fraction was subjected to purification steps, affording the known diterpenes eleganolone and eleganonal. Both compounds exhibited antioxidant potential, being interesting candidates for further neuroprotective studies.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Fármacos Neuroprotetores/química , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Alga Marinha/química , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neuroblastoma , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenóis/química , Fenóis/farmacologia
14.
Mar Drugs ; 17(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151240

RESUMO

So far, the Futuna Islands located in the Central Indo-Pacific Ocean have not been inventoried for their diversity in marine sponges and associated chemical diversity. As part of the Tara Pacific expedition, the first chemical investigation of the sponge Narrabeena nigra collected around the Futuna Islands yielded 18 brominated alkaloids: seven new bromotryptamine derivatives 1-7 and one new bromotyramine derivative 8 together with 10 known metabolites of both families 9-18. Their structures were deduced from extensive analyses of nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) data. In silico metabolite anticipation using the online tool MetWork revealed the presence of a key and minor biosynthetic intermediates. These 18 compounds showed almost no cytotoxic effect up to 10 µM on human neuroblastoma SH-SY5Y and microglia BV2 cells, and some of them exhibited an interesting neuroprotective activity by reducing oxidative damage.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poríferos/química , Alcaloides/isolamento & purificação , Alcaloides/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Humanos , Internet , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Oceano Pacífico , Clima Tropical
15.
Mar Drugs ; 16(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30036989

RESUMO

Two new zoanthamine alkaloids, namely 3-acetoxynorzoanthamine (1) and 3-acetoxyzoanthamine (2), have been isolated from the zoantharian Zoanthus cf. pulchellus collected off the coast of the Santa Elena Peninsula, Ecuador, together with three known derivatives: zoanthamine, norzoanthamine, and 3-hydroxynorzoanthamine. The chemical structures of 1 and 2 were determined by interpretation of their 1D and 2D NMR data and comparison with literature data. This is the first report of zoanthamine-type alkaloids from Zoanthus cf. pulchellus collected in the Tropical Eastern Pacific. The neuroinflammatory activity of all the isolated compounds was evaluated in microglia BV-2 cells and high inhibitory effects were observed in reactive oxygen species (ROS) and nitric oxide (NO) generation.


Assuntos
Alcaloides/química , Alcaloides/farmacologia , Antozoários/química , Azepinas/química , Azepinas/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamação/tratamento farmacológico , Quinolinas/química , Quinolinas/farmacologia , Animais , Espectroscopia de Ressonância Magnética/métodos , Microglia/efeitos dos fármacos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estereoisomerismo
16.
Pharmacol Res ; 107: 407-414, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27041481

RESUMO

Marine sponges are found to be a wide source of bioactive compounds with different effects such as anti-inflammatory or anticancer actions among others. Cyclophilin A (Cyp A) is a target protein implicated in the mechanism of action of immunosuppressive compounds such as Cyclosporine A (CsA). In the present paper we studied the binding between 4 Spongionella compounds (Gracilins H, A, L and Tetrahydroaplysulphurin-1) and Cyp A immobilized over a CM5 sensor chip. Thus, we found that Spongionella compounds showed to have similar binding affinities than CsA with dissociation equilibrium constant in the range. Next, the effect of these Spongionella isolated compounds was tested over calcineurin phosphatase activity. The same than CsA, Gracilin H, A and Tetrahydroaplysulphurin-1 were able to inhibit phosphatase activity once the complex between Cyp A-CsA/Spongionella compounds was formed. The ability to avoid the dephosphorylation of NFATc1 was also checked in human T cells isolated from peripheral blood. First, cells were pre-treated with Spongionella compounds or CsA following by Concanavalin A (Con A) stimulation. In these conditions nuclear NFATc1 levels were diminished either by CsA or Gracilin A, L, and Tetrahydroaplysulphurin-1 treatment. Moreover, as happens with CsA due to the inhibition of NFATc1, Interleukine-2 (IL-2) released to the culture medium was significantly decreased with all Spongionella compounds. Results conclude that, Spongionella derivatives preserve T lymphocytes from activation modulating the same pathway than CsA. Thus, this mechanism of action suggests that these compounds could be interesting candidates in drug development as immunosuppressive or anti-inflammatory drugs.


Assuntos
Ciclosporina/metabolismo , Diterpenos/metabolismo , Imunossupressores/metabolismo , Poríferos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/farmacologia , Humanos , Interleucina-2/metabolismo , Fatores de Transcrição NFATC/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
17.
Arch Toxicol ; 90(2): 479-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25572188

RESUMO

Although voltage-gated sodium channels (Na v ) are the cellular target of paralytic shellfish poisoning (PSP) toxins and that patch clamp electrophysiology is the most effective way of studying direct interaction of molecules with these channels, nowadays, this technique is still reduced to more specific analysis due to the difficulties of transforming it in a reliable throughput system. Actual functional methods for PSP detection are based in binding assays using receptors but not functional Na v channels. Currently, the availability of automated patch clamp platforms and also of stably transfected cell lines with human Na v channels allow us to introduce this specific and selective method for fast screenings in marine toxin detection. Taking advantage of the accessibility to pure PSP standards, we calculated the toxicity equivalent factors (TEFs) for nine PSP analogs obtaining reliable TEFs in human targets to fulfill the deficiencies of the official analytic methods and to verify automated patch clamp technology as a fast and reliable screening method for marine toxins that interact with the sodium channel. The main observation of this work was the large variation of TEFs depending on the channel subtype selected, being remarkable the variation of potency in the 1.7 channel subtype and the suitability of Na v 1.6 and 1.2 channels for PSP screening.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Toxinas Marinhas/toxicidade , Técnicas de Patch-Clamp/métodos , Intoxicação por Frutos do Mar , Canais de Sódio/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Canais de Sódio/genética
18.
Mar Drugs ; 14(2)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26828502

RESUMO

Yessotoxin (YTX) is a polyether compound produced by dinoflagellates and accumulated in filter feeding shellfish. No records about human intoxications induced by this compound have been published, however it is considered a toxin. Modifications in second messenger levels, protein levels, immune cells, cytoskeleton or activation of different cellular death types have been published as consequence of YTX exposure. This review summarizes the main intracellular pathways modulated by YTX and their pharmacological and therapeutic implications.


Assuntos
Dinoflagellida/metabolismo , Oxocinas/isolamento & purificação , Frutos do Mar/análise , Animais , Morte Celular/efeitos dos fármacos , Humanos , Venenos de Moluscos , Oxocinas/farmacologia , Oxocinas/toxicidade , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
19.
Cell Physiol Biochem ; 37(2): 779-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356268

RESUMO

BACKGROUND/AIMS: The effect of four secondary metabolites isolated from sponge Spongionella, gracilins H, A, L and tetrahydroaplysulphurin-1 on Calcium ion (Ca2+) fluxes were studied in SH-SY5Y neuroblastoma cells. METHODS AND RESULTS: These compounds did not modify cytosolic baseline Ca2+-levels. Nevertheless, when cytosolic Ca2+-influx through store operated calcium channels (SOC channels) was stimulated with Thapsigargin (Tg), a strong inhibition was observed in the presence of gracilin A, gracilin L and tetrahydroaplysulphurin-1. Since these compounds were able to protect mitochondria from oxidative stress, the role of this organelle in the Ca2+-influx inhibition was tested. In this sense, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and Cyclosporine A (CsA) were used. Surprisingly, both the inhibitory effect over Tg-sensitive stores and Ca2+ influx through SOC channels produced by FCCP were abolished with different potencies by Spongionella compounds in a similar way than CsA. CsA is able to avoid Mitochondrial Permeability Transition Pore (mPTP) opening. As well as CsA, Spongionella compounds reverted mPTP opening induced by FCCP. In the case of CsA the mPTP blockade is due to the direct binding to Cyclophilin D (Cyp D), a mitochondrial matrix protein. This association was also observed between gracilin L and tetrahydroaplysulphurin-1 and Cyp D. Therefore, Spongionella compounds modulate mitochondrial activity by preventing mPTP opening by binding to Cyp D. CONCLUSIONS: These effects make Spongionella compounds as new family of compounds with promising activity in human diseases where mitochondrial alterations are implicated.


Assuntos
Cálcio/metabolismo , Diterpenos/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuroblastoma/metabolismo , Poríferos/química , Animais , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Ciclosporina/farmacologia , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Metabolismo Secundário , Tapsigargina/farmacologia
20.
Cell Immunol ; 293(2): 104-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25594139

RESUMO

The c-kit inhibitor STI571 represents one of the most important treatments for patients with mastocytosis. However, intracellular pathways modulated by this compound are not completely defined. Here, STI571 effect on Protein Kinase C (PKC) regulation is determined in HMC-1 mast cell lines. STI571 activates PKCδ isoform resulting in HMC-1(560) apoptosis. The apoptosis observed is PKCδ-dependent, since PKCδ-silencing avoids STI571 effect. c-kit inhibition implies nuclear PKCδ translocation characterized by a clear dependence on actin cytoskeleton integrity in HMC-1(560) cell line, but not in HMC-1(560,816). Therefore, PKCδ modulations can lead to a serious decrease in STI571 treatment-effectiveness.


Assuntos
Apoptose/imunologia , Benzamidas/farmacologia , Mastócitos/imunologia , Piperazinas/farmacologia , Proteína Quinase C/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/imunologia , Pirimidinas/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Ativação Enzimática/imunologia , Citometria de Fluxo , Humanos , Mesilato de Imatinib , Isoenzimas , Proteína Quinase C/análise , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA