Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850612

RESUMO

Cognitive radio (CR) has emerged as one of the most investigated techniques in wireless networks. Research is ongoing in terms of this technology and its potential use. This technology relies on making full use of the unused spectrum to solve the problem of the spectrum shortage in wireless networks based on the excessive demand for spectrum use. While the wireless network technology node's range of applications in various sectors may have security drawbacks and issues leading to deteriorating the network, combining it with CR technology might enhance the network performance and improve its security. In order to enhance the performance of the wireless sensor networks (WSNs), a lightweight authentication medium access control (MAC) protocol for CR-WSNs that is highly compatible with current WSNs is proposed. Burrows-Abadi-Needham (BAN) logic is used to prove that the proposed protocol achieves secure and mutual authentication. The automated verification of internet security protocols and applications (AVISPA) simulation is used to simulate the system security of the proposed protocol and to provide formal verification. The result clearly shows that the proposed protocol is SAFE under the on-the-fly model-checker (OFMC) backend, which means the proposed protocol is immune to passive and active attacks such as man-in-the-middle (MITM) attacks and replay attacks. The performance of the proposed protocol is evaluated and compared with related protocols in terms of the computational cost, which is 0.01184 s. The proposed protocol provides higher security, which makes it more suitable for the CR-WSN environment and ensures its resistance against different types of attacks.

2.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420585

RESUMO

The integration of the Internet of Things (IoT) and the telecare medical information system (TMIS) enables patients to receive timely and convenient healthcare services regardless of their location or time zone. Since the Internet serves as the key hub for connection and data sharing, its open nature presents security and privacy concerns and should be considered when integrating this technology into the current global healthcare system. Cybercriminals target the TMIS because it holds a lot of sensitive patient data, including medical records, personal information, and financial information. As a result, when developing a trustworthy TMIS, strict security procedures are required to deal with these concerns. Several researchers have proposed smart card-based mutual authentication methods to prevent such security attacks, indicating that this will be the preferred method for TMIS security with the IoT. In the existing literature, such methods are typically developed using computationally expensive procedures, such as bilinear pairing, elliptic curve operations, etc., which are unsuitable for biomedical devices with limited resources. Using the concept of hyperelliptic curve cryptography (HECC), we propose a new solution: a smart card-based two-factor mutual authentication scheme. In this new scheme, HECC's finest properties, such as compact parameters and key sizes, are utilized to enhance the real-time performance of an IoT-based TMIS system. The results of a security analysis indicate that the newly contributed scheme is resistant to a wide variety of cryptographic attacks. A comparison of computation and communication costs demonstrates that the proposed scheme is more cost-effective than existing schemes.


Assuntos
Cartões Inteligentes de Saúde , Telemedicina , Humanos , Confidencialidade , Segurança Computacional , Internet
3.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366132

RESUMO

Wireless Sensor Networks (WSNs) are becoming more popular for many applications due to their convenient services. However, sensor nodes may suffer from significant security flaws, leading researchers to propose authentication schemes to protect WSNs. Although these authentication protocols significantly fulfill the required protection, security enhancement with less energy consumption is essential to preserve the availability of resources and secure better performance. In 2020, Youssef et al. suggested a scheme called Enhanced Probabilistic Cluster Head Selection (LEACH-PRO) to extend the sensors' lifetime in WSNs. This paper introduces a new variant of the LEACH-PRO protocol by adopting the blockchain security technique to protect WSNs. The proposed protocol (SLEACH-PRO) performs a decentralized authentication mechanism by applying a blockchain to multiple base stations to avoid system and performance degradation in the event of a station failure. The security analysis of the SLEACH-PRO is performed using Burrows-Abadi-Needham (BAN) logic and Automated Validation of Internet Security Protocols and Applications (AVISPA) tool. Moreover, the SLEACH-PRO is evaluated and compared to related protocols in terms of computational cost and security level based on its resistance against several attacks. The comparison results showed that the SLEACH-PRO protocol is more secure and requires less computational cost compared to other related protocols.


Assuntos
Blockchain , Segurança Computacional , Internet
4.
Entropy (Basel) ; 24(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36141166

RESUMO

The present study concerns the modeling of the thermal behavior of a porous longitudinal fin under fully wetted conditions with linear, quadratic, and exponential thermal conductivities surrounded by environments that are convective, conductive, and radiative. Porous fins are widely used in various engineering and everyday life applications. The Darcy model was used to formulate the governing non-linear singular differential equation for the heat transfer phenomenon in the fin. The universal approximation power of multilayer perceptron artificial neural networks (ANN) was applied to establish a model of approximate solutions for the singular non-linear boundary value problem. The optimization strategy of a sports-inspired meta-heuristic paradigm, the Tiki-Taka algorithm (TTA) with sequential quadratic programming (SQP), was utilized to determine the thermal performance and the effective use of fins for diverse values of physical parameters, such as parameter for the moist porous medium, dimensionless ambient temperature, radiation coefficient, power index, in-homogeneity index, convection coefficient, and dimensionless temperature. The results of the designed ANN-TTA-SQP algorithm were validated by comparison with state-of-the-art techniques, including the whale optimization algorithm (WOA), cuckoo search algorithm (CSA), grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, and machine learning algorithms. The percentage of absolute errors and the mean square error in the solutions of the proposed technique were found to lie between 10-4 to 10-5 and 10-8 to 10-10, respectively. A comprehensive study of graphs, statistics of the solutions, and errors demonstrated that the proposed scheme's results were accurate, stable, and reliable. It was concluded that the pace at which heat is transferred from the surface of the fin to the surrounding environment increases in proportion to the degree to which the wet porosity parameter is increased. At the same time, inverse behavior was observed for increase in the power index. The results obtained may support the structural design of thermally effective cooling methods for various electronic consumer devices.

5.
Entropy (Basel) ; 24(11)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36359604

RESUMO

Most plant viral infections are vector-borne. There is a latent period of disease inside the vector after obtaining the virus from the infected plant. Thus, after interacting with an infected vector, the plant demonstrates an incubation time before becoming diseased. This paper analyzes a mathematical model for persistent vector-borne viral plant disease dynamics. The backpropagated neural network based on the Levenberg-Marquardt algorithm (NN-BLMA) is used to study approximate solutions for fluctuations in natural plant mortality and vector mortality rates. A state-of-the-art numerical technique is utilized to generate reference data for obtaining surrogate solutions for multiple cases through NN-BLMA. Curve fitting, regression analysis, error histograms, and convergence analysis are used to assess accuracy of the calculated solutions. It is evident from our simulations that NN-BLMA is accurate and reliable.

6.
PLoS One ; 19(5): e0302559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743732

RESUMO

The persistent evolution of cyber threats has given rise to Gen V Multi-Vector Attacks, complex and sophisticated strategies that challenge traditional security measures. This research provides a complete investigation of recent intrusion detection systems designed to mitigate the consequences of Gen V Multi-Vector Attacks. Using the Fuzzy Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), we evaluate the efficacy of several different intrusion detection techniques in adjusting to the dynamic nature of sophisticated cyber threats. The study offers an integrated analysis, taking into account criteria such as detection accuracy, adaptability, scalability, resource effect, response time, and automation. Fuzzy AHP is employed to establish priority weights for each factor, reflecting the nuanced nature of security assessments. Subsequently, TOPSIS is employed to rank the intrusion detection methods based on their overall performance. Our findings highlight the importance of behavioral analysis, threat intelligence integration, and dynamic threat modeling in enhancing detection accuracy and adaptability. Furthermore, considerations of resource impact, scalability, and efficient response mechanisms are crucial for sustaining effective defense against Gen V Multi-Vector Attacks. The integrated approach of Fuzzy AHP and TOPSIS presents a strong and adaptable strategy for decision-makers to manage the difficulties of evaluating intrusion detection techniques. This study adds to the ongoing discussion about cybersecurity by providing insights on the positive and negative aspects of existing intrusion detection systems in the context of developing cyber threats. The findings help organizations choose and execute intrusion detection technologies that are not only effective against existing attacks, but also adaptive to future concerns provided by Gen V Multi-Vector Attacks.


Assuntos
Segurança Computacional , Lógica Fuzzy , Humanos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA