Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Bioinformatics ; 21(1): 122, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293263

RESUMO

BACKGROUND: Cancer is caused by genetic mutations, but not all somatic mutations in human DNA drive the emergence or growth of cancers. While many frequently-mutated cancer driver genes have already been identified and are being utilized for diagnostic, prognostic, or therapeutic purposes, identifying driver genes that harbor mutations occurring with low frequency in human cancers is an ongoing endeavor. Typically, mutations that do not confer growth advantage to tumors - passenger mutations - dominate the mutation landscape of tumor cell genome, making identification of low-frequency driver mutations a challenge. The leading approach for discovering new putative driver genes involves analyzing patterns of mutations in large cohorts of patients and using statistical methods to discriminate driver from passenger mutations. RESULTS: We propose a novel cancer driver gene detection method, QuaDMutNetEx. QuaDMutNetEx discovers cancer drivers with low mutation frequency by giving preference to genes encoding proteins that are connected in human protein-protein interaction networks, and that at the same time show low deviation from the mutual exclusivity pattern that characterizes driver mutations occurring in the same pathway or functional gene group across a cohort of cancer samples. CONCLUSIONS: Evaluation of QuaDMutNetEx on four different tumor sample datasets show that the proposed method finds biologically-connected sets of low-frequency driver genes, including many genes that are not found if the network connectivity information is not considered. Improved quality and interpretability of the discovered putative driver gene sets compared to existing methods shows that QuaDMutNetEx is a valuable new tool for detecting driver genes. QuaDMutNetEx is available for download from https://github.com/bokhariy/QuaDMutNetExunder the GNU GPLv3 license.


Assuntos
Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Humanos , Mutação
2.
Breast Cancer Res ; 22(1): 137, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276807

RESUMO

BACKGROUND: Survival rates for breast cancer (BC) have improved, but quality of life post-diagnosis/treatment can be adversely affected, with survivors reporting a constellation of psychoneurological symptoms (PNS) including stress, anxiety, depression, pain, fatigue, sleep disturbance, and cognitive dysfunction. METHODS: To assess a potential relationship between telomere length (TL) and the development/persistence of PNS, we longitudinally studied 70 women (ages 23-71) with early stage BC (I-IIIA) at 5 time-points: prior to treatment (baseline), the mid-point of their chemotherapy cycle, 6 months, 1 year, and 2 years following the initiation of chemotherapy. Measures quantified included assessments of each of the PNS noted above and TL [using both a multiplex qPCR assay and a chromosome-specific fluorescence in situ hybridization (FISH) assay]. RESULTS: Variables associated with qPCR mean TLs were age (p = 0.004) and race (T/S ratios higher in Blacks than Whites; p = 0.019). Significant differences (mostly decreases) in chromosome-specific TLs were identified for 32 of the 46 chromosomal arms at the mid-chemo time-point (p = 0.004 to 0.049). Unexpectedly, the sequential administration of doxorubicin [Adriamycin], cyclophosphamide [Cytoxan], and docetaxel [Taxotere] (TAC regimen) was consistently associated with higher TLs, when compared to TLs in women receiving a docetaxel [Taxotere], Carboplatin [Paraplatin], and trastuzumab [Herceptin] [TCH] chemotherapy regimen [association was shown with both the qPCR and FISH assays (p = 0.036)]. Of the PNS, pain was significantly negatively associated with TL (higher pain; shorter telomeres) for a subset of chromosomal arms (5q, 8p, 13p, 20p, 22p, Xp, Xq) (p = 0.014-0.047). Chromosomal TLs were also associated with 7 of the 8 cognitive domains evaluated, with the strongest relationship being noted for chromosome 17 and the visual memory domain (shorter telomeres; lower scores). CONCLUSIONS: We showed that race and age were significantly associated with telomere length in women treated for early stage BC and that acquired telomere alterations differed based on the woman's treatment regimen. Our study also demonstrated that pain and cognitive domain measures were significantly related to telomere values in this study cohort. Expanding upon the knowledge gained from this longitudinal study could provide insight about the biological cascade of events that contribute to PNS related to BC and/or its treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Disfunção Cognitiva/genética , Dor/genética , Homeostase do Telômero/efeitos dos fármacos , Adulto , Fatores Etários , Idoso , Envelhecimento/genética , Neoplasias da Mama/diagnóstico , Sobreviventes de Câncer/psicologia , Sobreviventes de Câncer/estatística & dados numéricos , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia , Feminino , Humanos , Cariotipagem , Estudos Longitudinais , Pessoa de Meia-Idade , Dor/diagnóstico , Dor/epidemiologia , Medição da Dor , Qualidade de Vida , Telômero/metabolismo , Fatores de Tempo , Adulto Jovem
3.
Nurs Res ; 63(4): 289-99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24977726

RESUMO

BACKGROUND: The exciting discovery that telomere shortening is associated with many health conditions and that telomere lengths can be altered in response to social and environmental exposures has underscored the need for methods to accurately and consistently quantify telomere length. OBJECTIVES: The purpose of this article is to provide a comprehensive summary that compares and contrasts the current technologies used to assess telomere length. DISCUSSION: Multiple methods have been developed for the study of telomeres. These techniques include quantification of telomere length by terminal restriction fragmentation-which was one of the earliest tools used for length assessment-making it the gold standard in telomere biology. Quantitative polymerase chain reaction provides the advantage of being able to use smaller amounts of DNA, thereby making it amenable to epidemiology studies involving large numbers of people. An alternative method uses fluorescent probes to quantify not only mean telomere lengths but also chromosome-specific telomere lengths; however, the downside of this approach is that it can only be used on mitotically active cells. Additional methods that permit assessment of the length of a subset of chromosome-specific telomeres or the subset of telomeres that demonstrate shortening are also reviewed. CONCLUSION: Given the increased utility for telomere assessments as a biomarker in physiological, psychological, and biobehavioral research, it is important that investigators become familiar with the methodological nuances of the various procedures used for measuring telomere length. This will ensure that they are empowered to select an optimal assessment approach to meet the needs of their study designs. Gaining a better understanding of the benefits and drawbacks of various measurement techniques is important not only in individual studies, but also to further establish the science of telomere associations with biobehavioral phenomena.


Assuntos
Biomarcadores/análise , Mapeamento Cromossômico/métodos , Técnicas Genéticas , Telômero/classificação , Corantes Fluorescentes , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Pesos e Medidas
4.
Cells ; 11(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883687

RESUMO

Cytogenetics laboratory tests are among the most important procedures for the diagnosis of genetic diseases, especially in the area of hematological malignancies. Manual chromosomal karyotyping methods are time consuming and labor intensive and, hence, expensive. Therefore, to alleviate the process of analysis, several attempts have been made to enhance karyograms. The current chromosomal image enhancement is based on classical image processing. This approach has its limitations, one of which is that it has a mandatory application to all chromosomes, where customized application to each chromosome is ideal. Moreover, each chromosome needs a different level of enhancement, depending on whether a given area is from the chromosome itself or it is just an artifact from staining. The analysis of poor-quality karyograms, which is a difficulty faced often in preparations from cancer samples, is time consuming and might result in missing the abnormality or difficulty in reporting the exact breakpoint within the chromosome. We developed ChromoEnhancer, a novel artificial-intelligence-based method to enhance neoplastic karyogram images. The method is based on Generative Adversarial Networks (GANs) with a data-centric approach. GANs are known for the conversion of one image domain to another. We used GANs to convert poor-quality karyograms into good-quality images. Our method of karyogram enhancement led to robust routine cytogenetic analysis and, therefore, to accurate detection of cryptic chromosomal abnormalities. To evaluate ChromoEnahancer, we randomly assigned a subset of the enhanced images and their corresponding original (unenhanced) images to two independent cytogeneticists to measure the karyogram quality and the elapsed time to complete the analysis, using four rating criteria, each scaled from 1 to 5. Furthermore, we compared the enhanced images with our method to the original ones, using quantitative measures (PSNR and SSIM metrics).


Assuntos
Aberrações Cromossômicas , Processamento de Imagem Assistida por Computador , Citogenética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Inteligência , Cariotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA