Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 64(10): 100437, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648213

RESUMO

The newly identified bacterium Dysosmobacter welbionis J115T improves host metabolism in high-fat diet (HFD)-fed mice. To investigate mechanisms, we used targeted lipidomics to identify and quantify bioactive lipids produced by the bacterium in the culture medium, the colon, the brown adipose tissue (BAT), and the blood of mice. In vitro, we compared the bioactive lipids produced by D. welbionis J115T versus the probiotic strain Escherichia coli Nissle 1917. D. welbionis J115T administration reduced body weight, fat mass gain, and improved glucose tolerance and insulin resistance in HFD-fed mice. In vitro, 19 bioactive lipids were highly produced by D. welbionis J115T as compared to Escherichia coli Nissle 1917. In the plasma, 13 lipids were significantly changed by the bacteria. C18-3OH was highly present at the level of the bacteria, but decreased by HFD treatment in the plasma and normalized in D. welbionis J115T-treated mice. The metabolic effects were associated with a lower whitening of the BAT. In the BAT, HFD decreased the 15-deoxy-Δ12,14-prostaglandin J2, a peroxisome proliferator-activated receptor (PPAR-γ) agonist increased by 700% in treated mice as compared to HFD-fed mice. Several genes controlled by PPAR-γ were upregulated in the BAT. In the colon, HFD-fed mice had a 60% decrease of resolvin D5, whereas D. welbionis J115T-treated mice exhibited a 660% increase as compared to HFD-fed mice. In a preliminary experiment, we found that D. welbionis J115T improves colitis. In conclusion, D. welbionis J115T influences host metabolism together with several bioactive lipids known as PPAR-γ agonists.

2.
Nanomedicine ; 48: 102633, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36435364

RESUMO

Here, prostaglandin D2-glycerol ester (PGD2-G) was selected to target neuroinflammation. As PGD2-G is reported to have a short plasmatic half-life, we propose to use lipid nanocapsules (LNC) as vehicle to safely transport PGD2-G to the central nervous system (CNS). PGD2-G-loaded LNC (PGD2-G-LNC) reduced pro-inflammatory cytokine expression in activated microglial cells, even so after crossing a primary olfactory cell monolayer. A single nasal administration of PGD2-G-LNC in lipopolysaccharide (LPS)-treated mice reduced pro-inflammatory cytokine expression in the olfactory bulb. Coating LNC's surface with a cell-penetrating peptide, transactivator of transcription (TAT), increased its accumulation in the brain. Although TAT-coated PGD2-G-LNC modestly exerted its anti-inflammatory effect in a mouse model of multiple sclerosis similar to free PGD2-G after nasal administration, TAT-coated LNC surprisingly reduced the expression of pro-inflammatory chemokines in the CNS. These data propose LNC as an interesting drug delivery tool and TAT-coated PGD2-G-LNC remains a good candidate, in need of further work.


Assuntos
Nanocápsulas , Diagnóstico Pré-Implantação , Feminino , Gravidez , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Encéfalo , Citocinas
3.
FASEB J ; 35(4): e21411, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749884

RESUMO

Pain is one of the cardinal signs accompanying inflammation. The prostaglandins (PGs), synthetized from arachidonic acid by cyclooxygenase (COX)-2, are major bioactive lipids implicated in inflammation and pain. However, COX-2 is also able to metabolize other lipids, including the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), to give glycerol ester (PG-G) and ethanolamide (PG-EA) derivatives of the PGs. Consequently, COX-2 can be considered as a hub not only controlling PG synthesis, but also PG-G and PG-EA synthesis. As they were more recently characterized, these endocannabinoid metabolites are less studied in nociception compared to PGs. Interestingly R-profens, previously considered as inactive enantiomers of nonsteroidal anti-inflammatory drugs (NSAIDs), are substrate-selective COX inhibitors. Indeed, R-flurbiprofen can selectively block PG-G and PG-EA production, without affecting PG synthesis from COX-2. Therefore, we compared the effect of R-flurbiprofen and S-flurbiprofen in models of inflammatory pain triggered by local administration of lipopolysaccharides (LPS) and carrageenan in mice. Remarkably, the effects of flurbiprofen enantiomers on mechanical hyperalgesia seem to depend on (i) the inflammatory stimuli, (ii) the route of administration, and (iii) the timing of administration. We also assessed the effect of administration of the PG-Gs, PG-EAs, and PGs on LPS-induced mechanical hyperalgesia. Our data support the interest of studying the nonhydrolytic endocannabinoid metabolism in the context of inflammatory pain.


Assuntos
Endocanabinoides/farmacologia , Flurbiprofeno/farmacologia , Inflamação/tratamento farmacológico , Dor/induzido quimicamente , Dor/tratamento farmacológico , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Capsaicina/toxicidade , Carragenina/toxicidade , Endocanabinoides/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos
4.
FASEB J ; 35(4): e21514, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734509

RESUMO

Inflammation is a critical component of many lung diseases including asthma and acute lung injury (ALI). Using high-performance liquid chromatography-mass spectrometry, we quantified the levels of oxysterols in two different murine models of lung diseases. These are lipid mediators derived from cholesterol and known to modulate immunity and inflammation. Interestingly, 25-hydroxycholesterol (25-OHC) was the only oxysterol with altered levels during lung inflammation, and its levels were differently affected according to the model. Therefore, we sought to assess how this oxysterol would affect lung inflammatory responses. In a model of lipopolysaccharide (LPS)-induced acute lung inflammation, 25-OHC levels were increased, and most of the hallmarks of the model (eg, leukocyte recruitment, mRNA expression, and secretion of inflammatory cytokines) were decreased following its intratracheal administration. We also found that, when administered in the lung, 25-OHC is metabolized locally into 25-hydroxycholesterol-3-sulfate and 7α,25-dihydroxycholesterol. Their administration in the lungs did not recapitulate all the effects of 25-OHC. Conversely, in a model of allergic asthma induced by intranasal administration of house dust mites (HDM), 25-OHC levels were decreased, and when intranasally administered, this oxysterol worsened the hallmarks of the model (eg, leukocyte recruitment, tissue remodeling [epithelium thickening and peribranchial fibrosis], and cytokine expression) and induced changes in leukotriene levels. Ex vivo, we found that 25-OHC decreases LPS-induced primary alveolar macrophage activation while having no effect on neutrophil activation. Its sulfated metabolite, 25-hydroxycholesterol-3-sulfate, decreased neutrophil, but not macrophage activation. Taken together, our data support a differential role of 25-OHC in ALI and allergic inflammation models.


Assuntos
Colesterol/metabolismo , Hidroxicolesteróis/metabolismo , Oxisteróis/metabolismo , Pneumonia/metabolismo , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos
5.
Crit Rev Food Sci Nutr ; : 1-26, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450301

RESUMO

Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.

6.
Molecules ; 27(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35164229

RESUMO

Convolvulus arvensis is used in Pakistani traditional medicine to treat inflammation-related disorders. Its anti-inflammatory potential was evaluated on hexane, dichloromethane, ethyl acetate, methanol, and aqueous extracts of whole plant on pro-inflammatory mediators in LPS-activated murine macrophage J774 cells at the non-cytotoxic concentration of 50 µg/mL. Ethyl acetate (ARE) and methanol (ARM) extracts significantly decreased mRNA levels of IL-6, TNF-α, MCP-1, COX-2, and iNOS. Furthermore, both extracts dose dependently decreased IL-6, TNF-α, and MCP-1 secretion. Forty-five compounds were putatively identified in ARE and ARM by dereplication (using HPLC-UV-HRMSn analysis and molecular networking), most of them are reported for the first time in C. arvensis, as for example, nineteen phenolic derivatives. Rutin, kaempferol-3-O-rutinoside, chlorogenic acid, 3,5-di-O-caffeoylquinic acid, N-trans-p-coumaroyl-tyramine, and N-trans-feruloyl-tyramine were main constituents identified and quantified by HPLC-PDA in ARE and ARM. Furthermore, chlorogenic acid, tyramine derivatives, and the mixture of the six identified major compounds significantly decreased IL-6 secretion by LPS-activated J774 cells. The activity of N-trans-p-coumaroyl-tyramine is shown here for the first time. Our results indicate that ARE, ARM and major constituents significantly inhibited the expression of pro-inflammatory mediators, which supports the use of this plant to treat inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Convolvulus/química , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Inflamação/induzido quimicamente , Macrófagos/imunologia , Camundongos , Compostos Fitoquímicos/análise , Extratos Vegetais/análise , Folhas de Planta/química , Células RAW 264.7
7.
FASEB J ; 33(6): 7635-7646, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30896979

RESUMO

Lung inflammation plays a crucial role in the pathogenesis of many respiratory diseases that are in need of new therapeutic strategies. Previously, we showed that inhibition of α/ß-hydrolase domain 6 (ABHD6) decreased macrophage activation and exerted anti-inflammatory effects. Therefore, we thought to assess the effects of ABHD6 inhibition in a mouse model of acute lung injury (ALI) induced by intratracheal administration of lipopolysaccharides. ABHD6 inhibition with N-methyl-N-{[3-(4-pyridinyl)phenyl]methyl}-carbamic acid 4'-(aminocarbonyl)(1,1'-biphenyl)-4-yl ester (WWL70) decreases most of the hallmarks of ALI, including neutrophil infiltration, cytokine secretion, and protein extravasation. mRNA expression of proinflammatory markers in the cells recovered in the bronchoalveolar lavage was also decreased. Interestingly, ABHD6 inhibition was more efficient than monoacylglycerol lipase inhibition by 4-nitrophenyl-4-[dibenzo(d)(14)dioxol-5-yl(hydroxy)methyl]piperidine-1-carboxylate. We also studied ABHD6 inhibition on primary alveolar macrophages and neutrophils to explore their potential implication in the effects of ABHD6 inhibition in vivo. Moreover, we quantified by high-performance liquid chromatography-mass spectrometry the levels of reported substrates of ABHD6 [i.e., 2-arachidonoylglycerol (2-AG) and lysophospholipids]. The potential implication of these lipid mediators in the effects of WWL70 was further investigated on primary alveolar macrophages. Taken together, these data support ABHD6 inhibition as an interesting anti-inflammatory strategy in acute lung inflammation and assess the possible contribution of 2-AG and lysophospholipids in the observed effects.-Bottemanne, P., Paquot, A., Ameraoui, H., Alhouayek, M., Muccioli, G. G. The α/ß-hydrolase domain 6 inhibitor WWL70 decreases endotoxin-induced lung inflammation in mice, potential contribution of 2-arachidonoylglycerol, and lysoglycerophospholipids.


Assuntos
Ácidos Araquidônicos/metabolismo , Compostos de Bifenilo/farmacologia , Carbamatos/farmacologia , Endocanabinoides/metabolismo , Endotoxinas/toxicidade , Inibidores Enzimáticos/farmacologia , Glicerídeos/metabolismo , Glicerofosfolipídeos/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Pneumonia/prevenção & controle , Animais , Líquido da Lavagem Broncoalveolar , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Camundongos , Neutrófilos/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Especificidade por Substrato
8.
Cancer Invest ; 37(8): 327-338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31423851

RESUMO

Little is known about the endocannabinoid (eCB) system in squamous cell carcinoma of the oral tongue (SCCOT). Here we have investigated, at the mRNA level, expression of genes coding for the components of the eCB system in tumour and non-malignant samples from SCCOT patients. Expression of NAPEPLD and PLA2G4E, coding for eCB anabolic enzymes, was higher in the tumour tissue than in non-malignant tissue. Among genes coding for eCB catabolic enzymes, expression of MGLL was lower in tumour tissue while PTGS2 was increased. It is concluded that the eCB system may be dysfunctional in SCCOT.


Assuntos
Biomarcadores Tumorais/genética , Endocanabinoides/genética , RNA Mensageiro/genética , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias da Língua/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Ciclo-Oxigenase 2/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fosfolipases A2 do Grupo IV/genética , Humanos , Masculino , Pessoa de Meia-Idade , Monoacilglicerol Lipases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosfolipase D/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias da Língua/patologia , Adulto Jovem
9.
FASEB J ; 32(9): 5000-5011, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29630407

RESUMO

Cyclooxygenase-2 (COX-2) has long been implicated in the pathogenesis of inflammatory bowel diseases (IBDs). COX-2 is mostly known for the production of prostaglandins (PGs) from arachidonic acid. However, it also metabolizes the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide into the less well-studied bioactive lipids PG-glycerol esters (PG-Gs) and PG-ethanolamides (PG-EAs or prostamides). We previously showed that PGD2-G, a product of 2-AG oxygenation by COX-2, has anti-inflammatory effects. Therefore, we used the dextran sulfate sodium (DSS)-induced model of colitis in mice to explore the role of PGD2-G in murine models of IBD. Colon inflammation was assessed using macroscopic and histologic scores, myeloperoxidase activity, and expression of inflammatory mediators by real-time quantitative PCR and ELISA. We also compared the effects of PGD2-G with those of PGD2 and PGD2-EA. Finally, we used receptor antagonists to gain mechanistic insight into the receptors responsible for the observed effects. PGD2-G reduced DSS-induced colitis, but PGD2 and PGD2-EA did not have the same effect. Furthermore, we showed that PGD2-G is an agonist of the PGD2 receptor 1 (DP1) and that some of the effects of PGD2-G were blocked by antagonism of peroxisome proliferator-activated receptor γ and DP1. Therefore, PGD2-G could be one of the products from the COX-2/prostaglandin D synthase axis to exert beneficial effects in colitis.-Alhouayek, M., Buisseret, B., Paquot, A., Guillemot-Legris, O., Muccioli, G. G. The endogenous bioactive lipid prostaglandin D2-glycerol ester reduces murine colitis via DP1 and PPARγ receptors.


Assuntos
Glicerol/metabolismo , Lipídeos , PPAR gama/metabolismo , Prostaglandina D2/metabolismo , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos Endogâmicos C57BL , Oxirredução
10.
Artigo em Inglês | MEDLINE | ID: mdl-30978461

RESUMO

Relatively little is known about the endocannabinoid system in human neuroblastoma cell lines. In the present study, we have investigated the expression of the genes coding for the enzymes involved in the synthesis and catabolism of endocannabinoids in the SH-SY5Y cell line. The expression of MGLL, the gene coding for the 2-arachidonoylglycerol hydrolytic enzyme monoacylglycerol lipase (MAGL), was found to be 85 and 340 fold lower than the expression levels for the genes coding for alpha/beta-hydrolase domain containing 6 and 12 (ABHD6, ABHD12), which are alternative hydrolytic enzymes for this endocannabinoid. In comparison, mRNA levels of MGLL were 1.5 fold higher than ABHD6 and 2 fold lower than the levels of ABHD12 in DU-145 human prostate cells. In functional assays, the hydrolysis of the 2-arachidonoylglycerol homologue 2-oleoylglycerol by intact SH-SY5Y cells was partially inhibited by the ABHD6 inhibitor WWL70, but not by the MAGL inhibitor JZL184, whereas the reverse was true in DU-145 cells. The combination of JZL184 + WWL70 did, however produce a significantly greater inhibition of 2-OG hydrolysis than seen with WWL70 alone in the SH-SY5Y cells. The low MGLL expression in the SH-SY5Y cells was not due to epigenetic silencing, since levels were not affected by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine and/or the histone acetylase inhibitor trichostatin A. The low MGLL expression in SH-SY5Y cells should be taken into account when using these cells in experiments investigating the involvement of the endocannabinoid system in models of physiological and pathological processes.


Assuntos
Regulação Neoplásica da Expressão Gênica , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Neuroblastoma/patologia , Linhagem Celular Tumoral , Decitabina/farmacologia , Endocanabinoides/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicerol/metabolismo , Humanos , Hidrólise , Ácidos Hidroxâmicos/farmacologia , RNA Mensageiro/genética
11.
Cell Mol Life Sci ; 75(15): 2857, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569030

RESUMO

In the original publication, sixth author's surname was incorrectly published as "Llyod" instead of "Lloyd". The correct name should read as "Amy Lloyd".

12.
Cell Mol Life Sci ; 75(15): 2843-2856, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29417177

RESUMO

Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.


Assuntos
Ativinas/metabolismo , Diferenciação Celular/fisiologia , Papila Dentária/metabolismo , Inflamação/prevenção & controle , Células Precursoras de Oligodendrócitos/metabolismo , Células-Tronco/metabolismo , Adulto , Animais , Linhagem Celular , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/prevenção & controle , Papila Dentária/citologia , Humanos , Inflamação/metabolismo , Camundongos , Neurônios/metabolismo , Oligodendroglia/metabolismo , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo
13.
J Neuroinflammation ; 15(1): 74, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523207

RESUMO

BACKGROUND: Oxysterols are cholesterol derivatives that have been suggested to play a role in inflammatory diseases such as obesity, atherosclerosis, or neuroinflammatory diseases. However, the effect of neuroinflammation on oxysterol levels has only been partially studied so far. METHODS: We used an HPLC-MS method to quantify over ten oxysterols both in in vitro and in vivo models of neuroinflammation. In the same models, we used RT-qPCR to analyze the expression of the enzymes responsible for oxysterol metabolism. Using the BV2 microglial cell line, we explored the effect of lipopolysaccharide (LPS)-induced (M1-type) and IL-4-induced (M2-type) cell activation on oxysterol levels. We also used LPS-activated co-cultures of mouse primary microglia and astrocytes. In vivo, we induced a neuroinflammation by administering LPS to mice. Finally, we used a mouse model of multiple sclerosis, namely the experimental autoimmune encephalomyelitis (EAE) model, that is characterized by demyelination and neuroinflammation. RESULTS: In vitro, we found that LPS activation induces profound alterations in oxysterol levels. Interestingly, we could discriminate between control and LPS-activated cells based on the changes in oxysterol levels both in BV2 cells and in the primary co-culture of glial cells. In vivo, the changes in oxysterol levels were less marked than in vitro. However, we found in both models increased levels of the GPR183 agonist 7α,25-dihydroxycholesterol. Furthermore, we studied in vitro the effect of 14 oxysterols on the mRNA expression of inflammatory markers in LPS-activated co-culture of microglia and astrocytes. We found that several oxysterols decreased the LPS-induced expression of pro-inflammatory markers. CONCLUSIONS: These data demonstrate that inflammation profoundly affects oxysterol levels and that oxysterols can modulate glial cell activation. This further supports the interest of a large screening of oxysterol levels when studying the interplay between neuroinflammation and bioactive lipids.


Assuntos
Encefalite/metabolismo , Encefalite/patologia , Encefalomielite Autoimune Experimental/metabolismo , Metabolismo , Oxisteróis/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Encéfalo/citologia , Células Cultivadas , Colestanotriol 26-Mono-Oxigenase/genética , Colestanotriol 26-Mono-Oxigenase/metabolismo , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Feminino , Regulação da Expressão Gênica/fisiologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo
14.
Brain Behav Immun ; 74: 96-105, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30071254

RESUMO

The prevalence of obesity has increased at an alarming rate during past decades. Obesity is associated with pathophysiological disorders that can evolve and increase the risk of heart disease, diabetes and hypertension. While the impact of diabetes on post-operative recovery is now known, the consequences of obesity on post-operative pain remain much less explored. Here, we show that obesity affects post-operative pain resolution and leads to a chronic pain state in mice. Several mechanisms were identified as implicated in the prolonged post-operative pain. Indeed, we found that following a hind paw incision, high fat diet prolonged glial cell activation in the spinal cord. It also altered the expression of neurotrophins and increased inflammatory and endoplasmic reticulum stress markers in both central and peripheral nervous systems. Moreover, we show that a dietary intervention, leading to weight reduction and decreased inflammation, was able to restore normal pain sensitivity in mice suffering from chronic pain for more than 10 weeks. In conclusion, our data demonstrate that obesity is responsible for pain chronicization. This is clearly of importance in a clinical post-operative setting.


Assuntos
Limiar da Dor/fisiologia , Dor Pós-Operatória/dietoterapia , Animais , Astrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hiperalgesia/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/efeitos dos fármacos , Neuroglia/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Dor Pós-Operatória/fisiopatologia , Medula Espinal/metabolismo
15.
Mol Pharm ; 15(1): 108-115, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29226685

RESUMO

L cells are enteroendocrine cells located throughout the gastrointestinal tract that secrete physiologically important peptides. The most characterized peptides secreted by L cells are the peptide YY (PYY) and the glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). These peptides are released rapidly into the circulation after oral nutrient ingestion. Recently, lipid-based nanoparticles (NP) have been described as triggers for GLP-1 secretion by L cells. NP physicochemical properties play a key role in the NP-cell interaction, and drive NP cell internalization. We herein hypothesize that lipid-based NP with appropriate size would not only be able to deliver drugs into blood circulation but also act like endogenous ligands to stimulate GLP-1 secretion. We tested five different size (25, 50, 100, 150, and 200 nm) lipid nanocapsules (LNC) on murine L cells in vitro to confirm this hypothesis. Our study showed that GLP-1 secretion was induced only by the 200 nm size LNC, highlighting the importance of LNC particle size on the secretion of GLP-1 by L cells. The different formulations did not affect proglucagon mRNA expression, suggesting that there was not an increased GLP-1 synthesis. As a proof of concept, we further demonstrated in normoglycemic mice that 200 nm LNC administration increases GLP-1 levels by 4- and 3-fold compared to untreated control mice 60 and 180 min after the administration, respectively. Our study suggests that 200 nm LNC as a nanocarrier to encapsulate drug candidates and as a ligand to induce endogenous GLP-1 secretion might represent a promising strategy for type 2 diabetes mellitus treatment.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lipídeos/química , Nanocápsulas/química , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Diabetes Mellitus Tipo 2 , Incretinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 474-484, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28065729

RESUMO

N-acylethanolamines (NAEs) such as N-palmitoylethanolamine and anandamide are endogenous bioactive lipids having numerous functions, including the control of inflammation. Their levels and therefore actions can be controlled by modulating the activity of two hydrolytic enzymes, N-acylethanolamine-hydrolyzing acid amidase (NAAA) and fatty acid amide hydrolase (FAAH). As macrophages are key to inflammatory processes, we used lipopolysaccharide-activated J774 macrophages, as well as primary mouse alveolar macrophages, to study the effect of FAAH and NAAA inhibition, using PF-3845 and AM9053 respectively, on macrophage activation and NAE levels measured by HPLC-MS. Markers of macrophage activation were measured by qRT-PCR and ELISA. Activation of macrophages decreased NAAA expression and NAE hydrolytic activity. FAAH and NAAA inhibition increased the levels of the different NAEs, although with different magnitudes, whether in control condition or following LPS-induced macrophage activation. Both inhibitors reduced several markers of macrophage activation, such as mRNA expression of inflammatory mediators, as well as cytokine and prostaglandin production, with however some differences between FAAH and NAAA inhibition. Most of the NAEs tested - including N-docosatetraenoylethanolamine and N-docosahexaenoylethanolamine - also reduced LPS-induced mRNA expression of inflammatory mediators, again with differences depending on the marker and the NAE, thus offering a potential explanation for the differential effect of the inhibitors on macrophage activation markers. In conclusion, we show different and complementary effects of NAE on lipopolysaccharide-induced macrophage activation. Our results support an important role for inhibition of NAE hydrolysis and NAAA inhibition in particular in controlling macrophage activation, and thus inflammation.


Assuntos
Amidoidrolases/metabolismo , Etanolaminas/metabolismo , Inflamação/tratamento farmacológico , Ácidos Palmíticos/metabolismo , Amidas , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Animais , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Etanolaminas/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/enzimologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/enzimologia , Camundongos , Ácidos Palmíticos/química , Piperidinas/administração & dosagem , Alcamidas Poli-Insaturadas/metabolismo , Piridinas/administração & dosagem
17.
J Neuroinflammation ; 13(1): 206, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27566530

RESUMO

BACKGROUND: Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. METHODS: We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. RESULTS: We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. CONCLUSIONS: This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system.


Assuntos
Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação/patologia , Obesidade/etiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Córtex Cerebral/citologia , Colesterol/metabolismo , Cultura , Citocinas/genética , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Fatores de Tempo
18.
FASEB J ; 29(2): 650-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25384424

RESUMO

N-Palmitoylethanolamine or palmitoylethanolamide (PEA) is an anti-inflammatory compound that was recently shown to exert peroxisome proliferator-activated receptor-α-dependent beneficial effects on colon inflammation. The actions of PEA are terminated following hydrolysis by 2 enzymes: fatty acid amide hydrolase (FAAH), and the less-studied N-acylethanolamine-hydrolyzing acid amidase (NAAA). This study aims to investigate the effects of inhibiting the enzymes responsible for PEA hydrolysis in colon inflammation in order to propose a potential therapeutic target for inflammatory bowel diseases (IBDs). Two murine models of IBD were used to assess the effects of NAAA inhibition, FAAH inhibition, and PEA on macroscopic signs of colon inflammation, macrophage/neutrophil infiltration, and the expression of proinflammatory mediators in the colon, as well as on the colitis-related systemic inflammation. NAAA inhibition increases PEA levels in the colon and reduces colon inflammation and systemic inflammation, similarly to PEA. FAAH inhibition, however, does not increase PEA levels in the colon and does not affect the macroscopic signs of colon inflammation or immune cell infiltration. This is the first report of an anti-inflammatory effect of a systemically administered NAAA inhibitor. Because NAAA is the enzyme responsible for the control of PEA levels in the colon, we put forth this enzyme as a potential therapeutic target in chronic inflammation in general and IBD in particular.


Assuntos
Amidoidrolases/metabolismo , Colite/terapia , Colo/metabolismo , Etanolaminas/metabolismo , Ácidos Palmíticos/metabolismo , Amidas , Animais , Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/metabolismo , Cromatografia Líquida de Alta Pressão , Colite/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Ensaio de Imunoadsorção Enzimática , Regulação da Expressão Gênica , Glicerídeos/metabolismo , Inflamação , Doenças Inflamatórias Intestinais/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Peroxidase/metabolismo , Piperidinas/química , Piridinas/química , Taurina/química
19.
Mol Pharm ; 13(12): 4222-4230, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934480

RESUMO

L cells have attracted particular interest because of the pleiotropic effects of their secreted peptides (i.e., glucagon-like peptide (GLP) 1 and 2, peptide YY (PYY)). L cells express different G-protein-coupled receptors (GPCRs) that can be activated by endogenous ligands found in the gut lumen. We herein hypothesized that lipid-based nanoparticles could mimic endogenous ligands and thus activate GLP-1 secretion in type 2 diabetes mellitus treatment. To assess this hypothesis, lipid-based nanoparticles (nanostructured lipid carriers (NLC), lipid nanocapsules (LNC), and liposomes) and PLGA nanoparticles were added to the L cells and GLP-1 secretion was quantified. Among these nanoparticles, only NLC resulted effective at inducing GLP-1 secretion in both murine and human L cells in vitro. The mRNA expression of proglucagon showed that this effect was due to an increased GLP-1 secretion and not to an increased GLP-1 synthesis. The mechanism by which NLC triggered GLP-1 secretion by L cells revealed an extracellular interaction of NLC, exerting a physiological GLP-1 secretion. We herein demonstrate that nanomedicine can be used to induce GLP-1 secretion from murine and human L cells.


Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Lipídeos/química , Nanopartículas/química , Animais , Células Cultivadas , Humanos , Camundongos , Nanopartículas/administração & dosagem
20.
Proc Natl Acad Sci U S A ; 110(43): 17558-63, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101490

RESUMO

Proinflammatory macrophages are key mediators in several pathologies; thus, controlling their activation is necessary. The endocannabinoid system is implicated in various inflammatory processes. Here we show that in macrophages, the newly characterized enzyme α/ß-hydrolase domain 6 (ABHD6) controls 2-arachidonoylglycerol (2-AG) levels and thus its pharmacological effects. Furthermore, we characterize a unique pathway mediating the effects of 2-AG through its oxygenation by cyclooxygenase-2 to give rise to the anti-inflammatory prostaglandin D2-glycerol ester (PGD2-G). Pharmacological blockade of cyclooxygenase-2 or of prostaglandin D synthase prevented the effects of increasing 2-AG levels by ABHD6 inhibition in vitro, as well as the 2-AG-induced increase in PGD2-G levels. Together, our data demonstrate the physiological relevance of the interaction between the endocannabinoid and prostanoid systems. Moreover, we show that ABHD6 inhibition in vivo allows for fine-tuning of 2-AG levels in mice, therefore reducing lipopolysaccharide-induced inflammation, without the characteristic central side effects of strong increases in 2-AG levels obtained following monoacylglycerol lipase inhibition. In addition, administration of PGD2-G reduces lipopolysaccharide-induced inflammation in mice, thus confirming the biological relevance of this 2-AG metabolite. This points to ABHD6 as an interesting therapeutic target that should be relevant in treating inflammation-related conditions, and proposes PGD2-G as a bioactive lipid with potential anti-inflammatory properties in vivo.


Assuntos
Inflamação/prevenção & controle , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monoacilglicerol Lipases/metabolismo , Prostaglandina D2/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Compostos de Bifenilo/farmacologia , Carbamatos/farmacologia , Linhagem Celular , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Ésteres/química , Feminino , Expressão Gênica/efeitos dos fármacos , Glicerídeos/metabolismo , Glicerídeos/farmacologia , Glicerol/química , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/genética , Prostaglandina D2/química , Prostaglandina D2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA