Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475204

RESUMO

Electricity theft presents a significant financial burden to utility companies globally, amounting to trillions of dollars annually. This pressing issue underscores the need for transformative measures within the electrical grid. Accordingly, our study explores the integration of block chain technology into smart grids to combat electricity theft, improve grid efficiency, and facilitate renewable energy integration. Block chain's core principles of decentralization, transparency, and immutability align seamlessly with the objectives of modernizing power systems and securing transactions within the electricity grid. However, as smart grids advance, they also become more vulnerable to attacks, particularly from smart meters, compared to traditional mechanical meters. Our research aims to introduce an advanced approach to identifying energy theft while prioritizing user privacy, a critical aspect often neglected in existing methodologies that mandate the disclosure of sensitive user data. To achieve this goal, we introduce three distributed algorithms: lower-upper decomposition (LUD), lower-upper decomposition with partial pivoting (LUDP), and optimized LUD composition (OLUD), tailored specifically for peer-to-peer (P2P) computing in smart grids. These algorithms are meticulously crafted to solve linear systems of equations and calculate users' "honesty coefficients," providing a robust mechanism for detecting fraudulent activities. Through extensive simulations, we showcase the efficiency and accuracy of our algorithms in identifying deceitful users while safeguarding data confidentiality. This innovative approach not only bolsters the security of smart grids against energy theft, but also addresses privacy and security concerns inherent in conventional energy-theft detection methods.

2.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894052

RESUMO

Plant health monitoring is essential for understanding the impact of environmental stressors (biotic and abiotic) on crop production, and for tailoring plant developmental and adaptive responses accordingly. Plants are constantly exposed to different stressors like pathogens and soil pollutants (heavy metals and pesticides) which pose a serious threat to their survival and to human health. Plants have the ability to respond to environmental stressors by undergoing rapid transcriptional, translational, and metabolic reprogramming at different cellular compartments in order to balance growth and adaptive responses. However, plants' exceptional responsiveness to environmental cues is highly complex, which is driven by diverse signaling molecules such as calcium Ca2+, reactive oxygen species (ROS), hormones, small peptides and metabolites. Additionally, other factors like pH also influence these responses. The regulation and occurrence of these plant signaling molecules are often undetectable, necessitating nondestructive, live research approaches to understand their molecular complexity and functional traits during growth and stress conditions. With the advent of sensors, in vivo and in vitro understanding of some of these processes associated with plant physiology, signaling, metabolism, and development has provided a novel platform not only for decoding the biochemical complexity of signaling pathways but also for targeted engineering to improve diverse plant traits. The application of sensors in detecting pathogens and soil pollutants like heavy metal and pesticides plays a key role in protecting plant and human health. In this review, we provide an update on sensors used in plant biology for the detection of diverse signaling molecules and their functional attributes. We also discuss different types of sensors (biosensors and nanosensors) used in agriculture for detecting pesticides, pathogens and pollutants.


Assuntos
Técnicas Biossensoriais , Plantas , Plantas/metabolismo , Técnicas Biossensoriais/métodos , Estresse Fisiológico , Metais Pesados/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Fenômenos Fisiológicos Vegetais , Praguicidas , Transdução de Sinais
3.
Planta ; 258(6): 105, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878056

RESUMO

MAIN CONCLUSION: Mechanosensitive channels are integral membrane proteins that rapidly translate extrinsic or intrinsic mechanical tensions into biological responses. They can serve as potential candidates for developing smart-resilient crops with efficient root systems. Mechanosensitive (MS) calcium channels are molecular switches for mechanoperception and signal transduction in all living organisms. Although tremendous progress has been made in understanding mechanoperception and signal transduction in bacteria and animals, this remains largely unknown in plants. However, identification and validation of MS channels such as Mid1-complementing activity channels (MCAs), mechanosensitive-like channels (MSLs), and Piezo channels (PIEZO) has been the most significant discovery in plant mechanobiology, providing novel insights into plant mechanoperception. This review summarizes recent advances in root mechanobiology, focusing on MS channels and their related signaling players, such as calcium ions (Ca2+), reactive oxygen species (ROS), and phytohormones. Despite significant advances in understanding the role of Ca2+ signaling in root biology, little is known about the involvement of MS channel-driven Ca2+ and ROS signaling. Additionally, the hotspots connecting the upstream and downstream signaling of MS channels remain unclear. In light of this, we discuss the present knowledge of MS channels in root biology and their role in root developmental and adaptive traits. We also provide a model highlighting upstream (cell wall sensors) and downstream signaling players, viz., Ca2+, ROS, and hormones, connected with MS channels. Furthermore, we highlighted the importance of emerging signaling molecules, such as nitric oxide (NO), hydrogen sulfide (H2S), and neurotransmitters (NTs), and their association with root mechanoperception. Finally, we conclude with future directions and knowledge gaps that warrant further research to decipher the complexity of root mechanosensing.


Assuntos
Raízes de Plantas , Transdução de Sinais , Animais , Espécies Reativas de Oxigênio , Percepção , Biologia
4.
Magn Reson Med ; 90(4): 1610-1624, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37279008

RESUMO

PURPOSE: Water saturation shift referencing (WASSR) Z-spectra are used commonly for field referencing in chemical exchange saturation transfer (CEST) MRI. However, their analysis using least-squares (LS) Lorentzian fitting is time-consuming and prone to errors because of the unavoidable noise in vivo. A deep learning-based single Lorentzian Fitting Network (sLoFNet) is proposed to overcome these shortcomings. METHODS: A neural network architecture was constructed and its hyperparameters optimized. Training was conducted on a simulated and in vivo-paired data sets of discrete signal values and their corresponding Lorentzian shape parameters. The sLoFNet performance was compared with LS on several WASSR data sets (both simulated and in vivo 3T brain scans). Prediction errors, robustness against noise, effects of sampling density, and time consumption were compared. RESULTS: LS and sLoFNet performed comparably in terms of RMS error and mean absolute error on all in vivo data with no statistically significant difference. Although the LS method fitted well on samples with low noise, its error increased rapidly when increasing sample noise up to 4.5%, whereas the error of sLoFNet increased only marginally. With the reduction of Z-spectral sampling density, prediction errors increased for both methods, but the increase occurred earlier (at 25 vs. 15 frequency points) and was more pronounced for LS. Furthermore, sLoFNet performed, on average, 70 times faster than the LS-method. CONCLUSION: Comparisons between LS and sLoFNet on simulated and in vivo WASSR MRI Z-spectra in terms of robustness against noise and decreased sample resolution, as well as time consumption, showed significant advantages for sLoFNet.


Assuntos
Aprendizado Profundo , Água , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
5.
Crit Rev Food Sci Nutr ; 63(27): 8489-8510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35445609

RESUMO

Mycotoxins are produced primarily as secondary fungal metabolites. Mycotoxins are toxic in nature and naturally produced by various species of fungi, which usually contaminate food and feed ingredients. The growth of these harmful fungi depends on several environmental factors, such as pH, humidity, and temperature; therefore, the mycotoxin distribution also varies among global geographical areas. Various rules and regulations regarding mycotoxins are imposed by the government bodies of each country, which are responsible for addressing global food and health security concerns. Despite this legislation, the incidence of mycotoxin contamination is continuously increasing. In this review, we discuss the geographical regulatory guidelines and recommendations that are implemented around the world to control mycotoxin contamination of food and feed products. Researchers and inventors from various parts of the world have reported several innovations for controlling mycotoxin-associated health consequences. Unfortunately, most of these techniques are restricted to laboratory scales and cannot reach users. Consequently, to date, no single device has been commercialized that can detect all mycotoxins that are naturally available in the environment. Therefore, in this study, we describe severe health hazards that are associated with mycotoxin exposure, their molecular signaling pathways and processes of toxicity, and their genotoxic and cytotoxic effects toward humans and animals. We also discuss recent developments in the construction of a sensitive and specific device that effectively implements mycotoxin identification and detection methods. In addition, our study comprehensively examines the recent advancements in the field for mitigating the health consequences and links them with the molecular and signaling pathways that are activated upon mycotoxin exposure.


Assuntos
Micotoxinas , Humanos , Animais , Micotoxinas/análise , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Alimentos , Umidade , Temperatura , Ração Animal/análise
6.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985647

RESUMO

Hepatitis E virus (HEV) is the notable causative agent of acute and chronic hepatic, renal, pancreatic, neurological, and hematopoietic blood cell infections with high risk in immunocompromised patients. Hepatic failure is mostly documented among adults, pregnant women, and patients with preexisting liver disease. HEV is a positive sense RNA virus of 7.2 kb genome size with typically three open reading frames (ORFs) which play essential roles in viral replication, genome assembly, and transcription. The mutational substitution in the viral RNA genome makes more it difficult to understand the actual relationship in the host-virus association. ORFs of HEV encode different structural and non-structural proteins and one of them is the capsid protein which is coded by ORF2. The capsid protein mediates the encapsulation of the viral genome as well as being involved in virion assembly. In the current study, the ligand-based docking approach was employed to inhibit the active amino acids of the viral capsid protein. Depending upon S-score, ADMET profiling, and drug scanning, the top ten tetrapeptides were selected as potential drug candidates with no toxicity counter to HEV receptor protein. The S-score or docking score is a mathematical function which predicts the binding affinities of docked complexes. The binding affinity of the predicted drug-target complexes helps in the selectivity of the desired compound as a potential drug. The best two selected peptides (i.e., TDGH with S-score of -8.5 and EGDE with S-score of -8.0) interacted with the active site amino acids of the capsid protein (i.e., Arg399, Gln420, and Asp444). The molecular dynamics simulations of RMSD trajectories of TDGH-capsid protein and EDGE-capsid protein have revealed that both docked complexes were structurally stable. The study revealed that these tetrapeptides would serve as strong potential inhibitors and a starting point for the development of new drug molecules against the HEV capsid protein. In future, in vivo studies are needed to explore selected peptides as potential drug candidates.


Assuntos
Vírus da Hepatite E , Gravidez , Humanos , Feminino , Vírus da Hepatite E/genética , Vírus da Hepatite E/metabolismo , Proteínas do Capsídeo/metabolismo , Peptídeos/metabolismo , Fígado/metabolismo , Aminoácidos/metabolismo
7.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903647

RESUMO

The present investigation was performed to evaluate the variability of the essential oil composition present in the seed extract of Kala zeera (Bunium persicum Bioss.) obtained from different geographical zones of Northwestern-Himalayan using Gas Chromatography-Mass Spectrum (GC-MS). The results of the GC-MS analysis revealed significant differences in the essential oil content. Significant variability was observed in the chemical constituents of the essential oils mainly for p-cymene, D-limonene, Gamma-terpinene, Cumic aldehyde and 1, 4-p-menthadien-7-al. Among these compounds, the highest average percentage across the locations was observed for gamma-terpinene (32.08%) which was followed by cumic aldehyde (25.07%), and 1, 4-p-menthadien-7-al (15.45%). Principal component analysis (PCA) also grouped the 4 highly significant compounds i.e., p-Cymene, Gamma-Terpinene, Cumic aldehyde, and 1,4-p-Menthadien-7-al into same cluster which are mainly distributed in Shalimar Kalazeera-1, and Atholi Kishtwar zones. The highest value of gamma-terpinene was recorded in Atholi accession (40.66%). However, among climatic zones Zabarwan Srinagar and Shalimar Kalazeera-1 was found to have highly positive significant correlation (0.99). The cophenetic correlation coefficient (c) was found to be 0.8334 during hierarchical clustering for 12 essential oil compounds showing that our results are highly correlated. Network analysis also showed the overlapping pattern and similar interaction between the 12 compounds as shown by hierarchical clustering analysis. From the results, it could be concluded that existence of variability among the various bioactive compounds of B. persicum which are probably to be incorporated to the potential list of drugs and may serve as good genetic source for various modern breeding programs.


Assuntos
Apiaceae , Óleos Voláteis , Óleos Voláteis/química , Melhoramento Vegetal , Apiaceae/química , Aldeídos
8.
Genomics ; 112(1): 749-763, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095998

RESUMO

Chitinases belong to the group of Pathogenesis-related (PR) proteins that provides protection against fungal pathogens. This study presents the, genome-wide identification and characterization of chitinase gene family in two important oilseed crops B. juncea and C. sativa belonging to family Brassicaceae. We have identified 47 and 79 chitinase genes in the genomes of B. juncea and C. sativa, respectively. Phylogenetic analysis of chitinases in both the species revealed four distinct sub-groups, representing different classes of chitinases (I-V). Microscopic and biochemical study reveals the role of reactive oxygen species (ROS) scavenging enzymes in disease resistance of B. juncea and C. sativa. Furthermore, qRT-PCR analysis showed that expression of chitinases in both B. juncea and C. sativa was significantly induced after Alternaria brassicae infection. However, the fold change in chitinase gene expression was considerably higher in C. sativa compared to B. juncea, which further proves their role in C. sativa disease resistance to A. brassicae. This study provides comprehensive analysis on chitinase gene family in B. juncea and C. sativa and in future may serve as a potential candidate for improving disease resistance in B. juncea through transgenic approach.


Assuntos
Alternaria , Brassicaceae/genética , Quitinases/genética , Família Multigênica , Mostardeira/genética , Antioxidantes/metabolismo , Brassicaceae/enzimologia , Brassicaceae/microbiologia , Quitinases/química , Quitinases/classificação , Cromossomos de Plantas , Duplicação Gênica , Genoma de Planta , Modelos Moleculares , Mostardeira/enzimologia , Mostardeira/microbiologia , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Estresse Fisiológico/genética , Sintenia , Transcrição Gênica
9.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281232

RESUMO

Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.


Assuntos
Produtos Agrícolas/metabolismo , Transporte de Íons/genética , Metabolômica/tendências , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Adaptação Biológica/genética , Íons , Locos de Características Quantitativas , Análise Espectral
10.
Phys Rev Lett ; 125(13): 132501, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034500

RESUMO

We report the first observation of two wobbling bands in ^{183}Au, both of which were interpreted as the transverse wobbling (TW) band but with different behavior of their wobbling energies as a function of spin. It increases (decreases) with spin for the positive (negative) parity configuration. The crucial evidence for the wobbling nature of the bands, dominance of the E2 component in the ΔI=1 transitions between the partner bands, is provided by the simultaneous measurements of directional correlation from the oriented states ratio and the linear polarization of the γ rays. Particle rotor model calculations with triaxial deformation reproduce the experimental data well. A value of spin, I_{m}, has been determined for the observed TW bands below which the wobbling energy increases and above which it decreases with spin. The nucleus ^{183}Au is, so far, the only nucleus in which both the increasing and the decreasing parts are observed and thus gives the experimental evidence of the complete transverse wobbling phenomenon.

11.
Microb Pathog ; 114: 50-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29180291

RESUMO

Antimicrobial peptides (AMPs) are generally considered as an essential component of innate immunity, thereby providing the first line of defense against wide range of pathogens. In addition, they can also kill the pathogens which are generally resistant to number of antibiotics, thereby providing the avenues for the development of future therapeutic agents. Fishes are constantly challenged by variety of pathogens which not only shows detrimental effect on their health but also increases risk of becoming resistant to conventional antibiotics. As fishes rely more on innate immunity, AMPs can serve as a potential defensive weapons in fishes for combating emerging devastating diseases. Generally, AMPs show multidimensional properties like rapid diffusion to the site of infection, recruitment of other immune cells to infected tissues and vigorous potential to rapidly neutralize broad range of pathogens (bacterial, fungal and viral). AMPs also exhibit diverse biological effect like endotoxin neutralization, immunomodulation and induction of angiogenesis in mammals. Due to these properties AMPs have become one of the most promising therapeutic agents to be studied. Till date, many AMPs have been isolated from the fishes but not fully characterized at molecular level. This review provides an overview of the structures, functions, and putative mechanisms of major families of fish AMPs. Further, we also highlighted how fish AMPs can be used as a novel therapeutic tool which is the theme of future research in drug development.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peixes/imunologia , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/genética , Bactérias/efeitos dos fármacos , Descoberta de Drogas , Peixes/genética , Fungos/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Imunomodulação , Vírus/efeitos dos fármacos
12.
Inflamm Res ; 67(7): 579-588, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29693710

RESUMO

Heme oxygenase-1 (HO-1) is considered to be the main protein in diseases arising as a result of oxidative and inflammatory insults. Tremendous research has been carried out on HO-1 since years, pertaining its cytoprotective effect against oxidative injury and other cellular stresses. HO-1, by regulating intracellular levels of pro-oxidant heme, or by other benefits of its by-products such as carbon monoxide (CO) and biliverdin (BV) had become an important candidate protein to be up-regulated to combat diverse stressful events. Although the beneficial effects of HO-1 induction have been reported in a number of cells and tissues, a growing body of evidence indicates that this increased HO-1 expression may lead to the progression of several diseases such as neurodegeneration, carcinogenesis. But it is not clear, what accounts for the increased expression of HO-1 in cells and tissues. The observed friendly role of HO-1 in a wide range of stress conditions since times is now doubtful. Therefore, more studies are needed to elucidate the exact role of HO-1 in various stressful events. Being more concise, elucidating the effect of HO-1 up-regulation on critical genes involved in particular diseases such as cancer will help to a larger extent to comprehend the exact role of HO-1. This review will assist in understanding the dual role (protective and detrimental) of HO-1 and the signaling pathway involved and will help in unraveling the doubtful role of HO-1 induction.


Assuntos
Heme Oxigenase-1/biossíntese , Animais , Indução Enzimática , Heme/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Transdução de Sinais
13.
Plants (Basel) ; 13(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891243

RESUMO

Plants are challenged by different microbial pathogens that affect their growth and productivity. However, to defend pathogen attack, plants use diverse immune responses, such as pattern-triggered immunity (PTI), effector-triggered immunity (ETI), RNA silencing and autophagy, which are intricate and regulated by diverse signaling cascades. Pattern-recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat (NLR) receptors are the hallmarks of plant innate immunity because they can detect pathogen or related immunogenic signals and trigger series of immune signaling cascades at different cellular compartments. In plants, most commonly, PRRs are receptor-like kinases (RLKs) and receptor-like proteins (RLPs) that function as a first layer of inducible defense. In this review, we provide an update on how plants sense pathogens, microbe-associated molecular patterns (PAMPs or MAMPs), and effectors as a danger signals and activate different immune responses like PTI and ETI. Further, we discuss the role RNA silencing, autophagy, and systemic acquired resistance as a versatile host defense response against pathogens. We also discuss early biochemical signaling events such as calcium (Ca2+), reactive oxygen species (ROS), and hormones that trigger the activation of different plant immune responses. This review also highlights the impact of climate-driven environmental factors on host-pathogen interactions.

14.
ACS Omega ; 9(7): 8557-8573, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405473

RESUMO

Heavy metals (HMs) pose a serious threat to agricultural productivity. Therefore, there is a need to find sustainable approaches to combat HM stressors in agriculture. In this study, we isolated Trichoderma sp. TF-13 from metal-polluted rhizospheric soil, which has the ability to resist 1600 and 1200 µg mL-1 cadmium (Cd) and lead (Pb), respectively. Owing to its remarkable metal tolerance, this fungal strain was applied for bioremediation of HMs in Vigna radiata (L.). Strain TF-13 produced siderophore, salicylic acid (SA; 43.4 µg mL-1) and 2,3-DHBA (21.0 µg mL-1), indole-3-acetic acid, ammonia, and ACC deaminase under HM stressed conditions. Increasing concentrations of tested HM ions caused severe reduction in overall growth of plants; however, Trichoderma sp. TF-13 inoculation significantly (p ≤ 0.05) increased the growth and physiological traits of HM-treated V. radiata. Interestingly, Trichoderma sp. TF-13 improved germination rate (10%), root length (26%), root biomass (32%), and vigor index (12%) of V. radiata grown under 25 µg Cd kg-1 soil. Additionally, Trichoderma inoculation showed a significant (p ≤ 0.05) increase in total chlorophyll, chl a, chl b, carotenoid content, root nitrogen (N), and root phosphorus (P) of 100 µg Cd kg-1 soil-treated plants over uninoculated treatment. Furthermore, enzymatic and nonenzymatic antioxidant activities of Trichoderma inoculated in metal-treated plants were improved. For instance, strain TF-13 increased proline (37%), lipid peroxidation (56%), catalase (35%), peroxidase (42%), superoxide dismutase (27%), and glutathione reductase (39%) activities in 100 µg Pb kg-1 soil-treated plants. The uptake of Pb and Cd in root/shoot tissues was decreased by 34/39 and 47/38% in fungal-inoculated and 25 µg kg-1 soil-treated plants. Thus, this study demonstrates that stabilizing metal mobility in the rhizosphere through Trichoderma inoculation significantly reduced the detrimental effects of Cd and Pb toxicity in V. radiata and also enhanced development under HM stress conditions.

15.
Front Plant Sci ; 15: 1407789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903424

RESUMO

Waterlogging is a constant threat to crop productivity and ecological biodiversity. Plants face multiple challenges during waterlogging stress like metabolic reprogramming, hypoxia, nutritional depletion, reduction in gaseous exchange, pH modifications, microbiome alterations and disease promotion all of which threaten plants survival. Due to global warming and climatic change, the occurrence, frequency and severity of flooding has dramatically increased posing a severe threat to food security. Thus, developing innovative crop management technologies is critical for ensuring food security under changing climatic conditions. At present, the top priority among scientists is to find nature-based solutions to tackle abiotic or biotic stressors in sustainable agriculture in order to reduce climate change hazards to the environment. In this regard, utilizing plant beneficial microbiome is one of the viable nature based remedial tool for mitigating abiotic stressors like waterlogging. Beneficial microbiota provides plants multifaceted benefits which improves their growth and stress resilience. Plants recruit unique microbial communities to shield themselves against the deleterious effects of biotic and abiotic stress. In comparison to other stressors, there has been limited studies on how waterlogging stress affects plant microbiome structure and their functional traits. Therefore, it is important to understand and explore how waterlogging alters plant microbiome structure and its implications on plant survival. Here, we discussed the effect of waterlogging stress in plants and its microbiome. We also highlighted how waterlogging stress promotes pathogen occurrence and disease development in plants. Finally, we highlight the knowledge gaps and areas for future research directions on unwiring how waterlogging affects plant microbiome and its functional traits. This will pave the way for identifying resilient microbiota that can be engineered to promote their positive interactions with plants during waterlogging stress.

16.
Plants (Basel) ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891276

RESUMO

Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases.

17.
Microorganisms ; 11(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36838356

RESUMO

Plant diseases pose a serious threat to crop production and the agricultural economy across the globe. Currently, chemical pesticides are frequently employed to combat these infections, which cause environmental toxicity and the emergence of resistant pathogens. Moreover, the genetic manipulation of plant defense pathways and the breeding of resistant genes has attained limited success due to the rapid evolution of pathogen virulence and resistance, together with host range expansion. Additionally, due to climate change and global warming, the occurrence of multiple stresses during disease outbreak has further impacted overall crop growth and productivity, posing a serious threat to food security. In this regard, harnessing the plant beneficial microbiome and its products can provide novel avenues for disease resistance in addition to boosting agricultural output, soil fertility and environmental sustainability. In plant-beneficial microbiome interactions, induced systemic resistance (ISR) has emerged as a key mechanism by which a beneficial microbiome primes the entire plant system for better defense against a wide range of phytopathogens and pests. In this review, we provide the recent developments on the role of plant beneficial microbiomes in disease resistance. We also highlight knowledge gaps and discuss how the plant immune system distinguishes pathogens and beneficial microbiota. Furthermore, we provide an overview on how immune signature hormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), shape plant beneficial microbiome. We also discuss the importance of various high-throughput tools and their integration with synthetic biology to design tailored microbial communities for disease resistance. Finally, we conclude by highlighting important themes that need future attention in order to fill the knowledge gaps regarding the plant immune system and plant-beneficial-microbiome-mediated disease resistance.

18.
Plant Physiol Biochem ; 203: 108032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37757722

RESUMO

In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.

19.
Plants (Basel) ; 12(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37050170

RESUMO

Soil flooding has emerged as a serious threat to modern agriculture due to the rapid global warming and climate change, resulting in catastrophic crop damage and yield losses. The most detrimental effects of waterlogging in plants are hypoxia, decreased nutrient uptake, photosynthesis inhibition, energy crisis, and microbiome alterations, all of which result in plant death. Although significant advancement has been made in mitigating waterlogging stress, it remains largely enigmatic how plants perceive flood signals and translate them for their adaptive responses at a molecular level. With the advent of multiomics, there has been significant progress in understanding and decoding the intricacy of how plants respond to different stressors which have paved the way towards the development of climate-resistant smart crops. In this review, we have provided the overview of the effect of waterlogging in plants, signaling (calcium, reactive oxygen species, nitric oxide, hormones), and adaptive responses. Secondly, we discussed an insight into past, present, and future prospects of waterlogging tolerance focusing on conventional breeding, transgenic, multiomics, and gene-editing approaches. In addition, we have also highlighted the importance of panomics for developing waterlogging-tolerant cultivars. Furthermore, we have discussed the role of high-throughput phenotyping in the screening of complex waterlogging-tolerant traits. Finally, we addressed the current challenges and future perspectives of waterlogging signal perception and transduction in plants, which warrants future investigation.

20.
J Adv Res ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38101748

RESUMO

BACKGROUND: How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW: The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW: Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA