Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(2): 541-560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932864

RESUMO

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Assuntos
Arabidopsis , Norisoprenoides , Solanum lycopersicum , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/metabolismo , Resistência à Doença/genética , Transcriptoma , Ácido Abscísico , Botrytis/metabolismo , Plantas Geneticamente Modificadas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 113(5): 986-1003, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602437

RESUMO

The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-ß-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1. In vitro enzymatic assays and expression in Synechocystis sp. PCC6803 revealed an unreported 13-cis/15-cis/9-cis- and a 9-cis/all-trans-ß-carotene isomerization. Although disruption of AtD27-like1 did not cause SL deficiency phenotypes, overexpression of AtD27-like1 in the d27 mutant restored the more-branching phenotype, indicating a contribution of AtD27-like1 to SL biosynthesis. Accordingly, generated d27 d27like1 double mutants showed a more pronounced branching phenotype compared to d27. The contribution of AtD27-like1 to SL biosynthesis is likely a result of its formation of 9-cis-ß-carotene that was present at higher levels in AtD27-like1 overexpressing lines. By contrast, AtD27-like1 expression correlated negatively with the content of 9-cis-violaxanthin, a precursor of ABA, in shoots. Consistently, ABA levels were higher in shoots and also in dry seeds of the d27like1 and d27 d27like1 mutants. Transgenic lines expressing GUS driven by the AtD27LIKE1 promoter and transcript analysis of hormone-treated Arabidopsis seedlings revealed that AtD27LIKE1 is expressed in different tissues and affects ABA and auxin. Taken together, our work reports a cis/cis-ß-carotene isomerase that affects the content of both cis-carotenoid-derived plant hormones, ABA and SLs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , beta Caroteno/metabolismo , cis-trans-Isomerases/genética , cis-trans-Isomerases/metabolismo , Regulação da Expressão Gênica de Plantas , Isomerases/genética , Isomerases/metabolismo
3.
Plant Dis ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769292

RESUMO

Bitter rot and Glomerella leaf spot (GLS) are two distinct diseases of apple fruit and foliage caused by members of the ascomycete fungal genus Colletotrichum. While GLS is restricted to subtropical and in some areas to temperate climates, bitter rot is responsible for significant yield loss worldwide, particularly during the post-harvest period. Initially thought to be caused by just two species of Colletotrichum, C. acutatum and C. gloeosporioides, advances in molecular biology and sequencing techniques enabled the identification of 25 different species capable of causing bitter rot and/or GLS of apple belongs to the C. gloeosporioides species complex (CGSC), C. acutatum species complex (CASC) and C. boninense species complex (CBSC). Three species (C. gloeosporioides, C. fructicola, and C. chrysophilum) of CGSC cause both bitter rot and GLS, 18 species (6 of CGSC and 12 of CASC) only cause bitter rot, and four species (C. aenigma and C. asianum of CGSC, C. limetticola of CASC and C. karstii of CBSC) only cause GLS. These species were found to differ in their geographical distribution, environmental and host tissue preference, pathogenicity, and fungicide sensitivities. In this review, we summarize the distribution, life cycle, and pathogenicity mechanisms of all currently known Colletotrichum species responsible for bitter rot and GLS of apple. Furthermore, we describe known apple defense mechanisms and management strategies for the control of these economically significant pathogens and identify gaps in our present understanding for future research.

4.
Plant Dis ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907522

RESUMO

Grapevine enamovirus 1 (GEV1) belongs to the genus Enamovirus, in the family Solemoviridae. It has been reported from several countries infecting grapevines including Brazil (Silva et al. 2017), China (Ren et al. 2021) and France (Hily et al. 2022). To assess the prevalence and diversity of economically important grapevine viruses in nine Canadian vineyards, total RNA and double-stranded RNA (dsRNA) (Fall et al. 2020) were extracted from 30 and 100 composite samples respectively, with each consisting of five vines of the same cultivars. The cultivars included in this study are Frontenac noir (n=34), Vidal (n=32), Marquette (n=33), Riesling (n=31), and Pinot noir (n=31). The total RNA and dsRNA samples were subsequently multiplexed and diagnosed by high-throughput sequencing (HTS) on NovaSeq (600 S4 PE100) and MiSeq (2 × 250 cycle PE) respectively. From NovaSeq and MiSeq sequencing, an average of 410,000 to 1.3 million reads/sample were obtained, respectively, with mapped viral reads representing 10.92% to 12.48% of the total reads. After sequence quality was verified using Trimmomatic v.0.40 (Bolger et al. 2014), the clean sequences were screened against all possible viruses in the databases using the Virtool (Rott et al. 2017) and VirFind virus detection pipelines (Ho and Tzanetakis 2014). GEV1 was detected in clean sequences from two, three, and two leaf samples of cultivars 'Marquette' 'Riesling' and 'Frontenac noir' respectively. Six of the seven HTS-assembled GEV1 genomes were partial, ranging from 4,523 to 6,000 nucleotide (nt) with genome coverage varying from 71% to 89%. Only one 6,314 nt long assembled contig (Accession No. OR021829), represented a nearly complete genome, being only 53 and 3 nt shorter than Sd-CG (MT536978) at 5' and 3' untranslated regions (UTR), respectively. Isolate 3- Riesling-CAN (OR021829) shares 90.56 to 94.19% nt identities with several GEV1isolates at 96-99% of query coverage. Phylogenetically, OR021829 is closer to GEV1 isolates from France and China (Figure S1). To validate the HTS results, the developed primer pair SetF and Set1R (Silva et al., 2017) was used for RT-PCR detection. The amplicons from all seven HTS-positive samples were sequenced using Sanger sequencing, confirming the presence of GEV-1 in three studied grape cultivars in Canadian vineyards. Symptoms associated with the specific GEV1-infected vines could not be explained as composite samples were used. Each of the combined samples HTS library also tested positive for at least one of the known grape virus/viroids, namely grapevine leafroll associated-virus -3, grapevine pinot gris virus, grapevine rupestris stem pitting-associated virus, Marafivirus syrahense grapevine Syrah virus-1 and hop stunt viroid. To our knowledge, this is the first report of GEV1 being detected in grapevines in Canada, or in any North American vineyard. GEV1 is a relatively new virus, and its biology remains largely unknown. Based on this sequence new GEV1 primers can be developed to know the genetic variability among GEV-1 and improve the detection of this virus in vineyards.

5.
Plant Dis ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669178

RESUMO

A dieback of apple trees (Malus domestica (Suckow) Borkh.) associated with cankers was observed in commercial orchards in southwestern Ontario, Canada, in 2019. Fifteen 2 to 10-year-old symptomatic trees were collected from three orchards exhibiting up to 37% disease incidence. Small sections of diseased wood (1 cm long) were surface sterilized with 70% ethanol for 30 sec and 1% NaClO for 20 min, rinsed thrice in sterile water, placed on 2% PDA (Difco) amended with kanamycin (50 mg liter-1), and incubated at 22°C for 5 days in the dark (Ilyukhin et al. 2023). Fungal colonies that were consistently isolated were hyphal-tipped, transferred to individual PDA plates and incubated at 22°C for 7 days in the dark. Purified isolates with same characteristics were classed into morphotypes. One morphotype was initially white and turned dark olivaceous with dense aerial mycelium. Pycnidia were produced on pine needles on PDA (Fig. S2) after incubation at 22°C for 17 days in the dark. Conidia were brown, aseptate, ovoid, and measured 27.9 to 31.3 µm x 12.1 to 14.2 µm (mean ± S.D. of 15 conidia = 29.9 ± 0.9 µm × 13.2 ± 0.6 µm), the typical morphology of a Diplodia sp. (Phillips et al. 2012). Genomic DNA was extracted from a 7-day-old culture of a representative isolate M45-28, using the Plant/Fungi DNA Isolation Kit (Norgen Biotech, Canada). The internal transcribed spacer (ITS), translation elongation factor 1-α (EF1-α) and ß-tubulin gene regions were amplified and sequenced with primers ITS1/ITS4, EF1-728F/EF1-986R and Bt2a/Bt2b and deposited in GenBank with accession numbers MZ970605, MZ995430 and MZ995431, respectively. Based on the sequence, the fungus was identified as Diplodia intermedia A.J.L. Phillips et al. and matched isolates from different hosts and countries (ITS: 100%, MG220378; EF1-α: 100%, MG220385; ß-tubulin: 99.24%, MT592502). The maximum likelihood-based phylogenetic analysis of ITS, EF1-α and ß-tubulin concatenated sequences was performed using IQ-Tree 2.2.2.7 (Minh et al. 2020). M45-28 was clustered with high bootstrap support values with D. intermedia isolates from the Westerdijk Fungal Biodiversity Institute collection, including the ex-holotype (CBS 124462) (Fig. S1). A living culture of M45-28 was deposited in the Canadian Collection of Fungal Cultures (DAOMC 252253). Pathogenicity assay was conducted by inoculating mycelial plugs from a 7-day-old culture of M45-28 into wounds made on the trunk of 5 eight-month-old potted healthy 'Royal Gala' apple seedlings. Five control seedlings were inoculated with sterile plugs. Canker symptoms appeared 15 days after inoculation, spread around, up and down the main stem from the inoculation point, and by 7 weeks the upper portion of the seedling was dead (Fig. S2). Diplodia intermedia was re-isolated from all inoculated seedlings and species identity was confirmed by sequencing as described above, fulfilling Koch's postulates. Control seedlings remained symptomless and the fungus was not isolated from the wood. Diplodia intermedia was reported to cause cankers on apple in Uruguay (Delgado-Cerrone et al. 2016), wild apple (Malus sylvestris) in Portugal (Phillips et al. 2012), grapevines in France (Comont et al. 2016) and forest trees in Iran (Kazemzadeh Chakusary et al. 2019). To the best of our knowledge, this is the first report of D. intermedia causing canker and dieback diseases on apple trees in Canada. Further studies are required to better understand the epidemiology involved in the dynamic spread of the disease in order to recommend an adequate phytosanitary program for its control.

6.
Plant Dis ; 107(1): 167-176, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35724313

RESUMO

Valdensia leaf spot, caused by Valdensia heterodoxa, is a serious disease of lowbush blueberry. The disease may develop rapidly, resulting in extensive defoliation of fields. The purpose of this study was to examine the effects of temperature and wetness duration on various components of the infection cycle to gain a better understanding of epidemic development that might lead to improved management practices. Lesions on leaves appeared 6 h after inoculation at 20°C and were larger on young 3-week-old leaves compared with 8-week-old leaves. Incidence of infection on 3-week-old leaves was lowest at 5°C, highest at 15 and 20°C, and failed to occur at 30°C. Defoliation began 48 h after inoculation at 20 and 25°C but was slower at higher and lower temperatures. Conidia production and release from colonized leaves began 48 h after inoculation at 15 and 19°C. Total conidia production was lowest at 7°C, highest at 15°C, and progressively declined at 19 and 23°C. Production of conidia lasted 2 to 3 days. Sclerotia formed mainly along the midveins and were similar in size at 5 to 15°C, largest at 20°C, and smallest at 25°C. Conidia formed directly on sclerotia that were overwintered outdoors and then incubated on moist filter paper. Conidia production began after 48 h at 10, 15, and 20°C. Total production was lowest at 5°C, highest at 20°C, failed to occur at 25°C, and ceased after 10 days at all temperatures. These data show that at optimal temperatures, relatively short wet periods are required for conidia production on overwintered sclerotia, infection of leaves, and subsequent conidia production on diseased leaves that may account for the sudden and rapid spread of disease in fields. The data will be useful for helping growers identify weather conditions favorable for disease development.


Assuntos
Mirtilos Azuis (Planta) , Epidemias , Temperatura , Tempo (Meteorologia) , Esporos Fúngicos
7.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850466

RESUMO

The human body's temperature is one of the most important vital markers due to its ability to detect various diseases early. Accurate measurement of this parameter has received considerable interest in the healthcare sector. We present a novel study on the optimization of a temperature sensor based on silver interdigitated electrodes (IDEs) and carbon-sensing film. The sensor was developed on a flexible Kapton thin film first by inkjet printing the silver IDEs, followed by screen printing a sensing film made of carbon black. The IDE finger spacing and width of the carbon film were both optimized, which considerably improved the sensor's sensitivity throughout a wide temperature range that fully covers the temperature of human skin. The optimized sensor demonstrated an acceptable temperature coefficient of resistance (TCR) of 3.93 × 10-3 °C-1 for temperature sensing between 25 °C and 50 °C. The proposed sensor was tested on the human body to measure the temperature of various body parts, such as the forehead, neck, and palm. The sensor showed a consistent and reproducible temperature reading with a quick response and recovery time, exhibiting adequate capability to sense skin temperatures. This wearable sensor has the potential to be employed in a variety of applications, such as soft robotics, epidermal electronics, and soft human-machine interfaces.


Assuntos
Corpo Humano , Dispositivos Eletrônicos Vestíveis , Humanos , Prata , Temperatura Corporal , Carbono , Eletrodos
8.
Plant J ; 107(1): 54-66, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837613

RESUMO

Carotenoid-derived regulatory metabolites and hormones are generally known to arise through the oxidative cleavage of a single double bond in the carotenoid backbone, which yields mono-carbonyl products called apocarotenoids. However, the extended conjugated double bond system of these pigments predestines them also to repeated cleavage forming dialdehyde products, diapocarotenoids, which have been less investigated due to their instability and low abundance. Recently, we reported on the short diapocarotenoid anchorene as an endogenous Arabidopsis metabolite and specific signaling molecule that promotes anchor root formation. In this work, we investigated the biological activity of a synthetic isomer of anchorene, iso-anchorene, which can be derived from repeated carotenoid cleavage. We show that iso-anchorene is a growth inhibitor that specifically inhibits primary root growth by reducing cell division rates in the root apical meristem. Using auxin efflux transporter marker lines, we also show that the effect of iso-anchorene on primary root growth involves the modulation of auxin homeostasis. Moreover, by using liquid chromatography-mass spectrometry analysis, we demonstrate that iso-anchorene is a natural Arabidopsis metabolite. Chemical inhibition of carotenoid biosynthesis led to a significant decrease in the iso-anchorene level, indicating that it originates from this metabolic pathway. Taken together, our results reveal a novel carotenoid-derived regulatory metabolite with a specific biological function that affects root growth, manifesting the biological importance of diapocarotenoids.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Meristema/efeitos dos fármacos , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas
9.
Plant Dis ; 106(1): 297-303, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34372680

RESUMO

Leaf spot and stem canker caused by Sphaerulina vaccinii is associated with premature defoliation in lowbush blueberry resulting in reduced yields. In this study, we investigated the impact of free water, RH, temperature, light, and plant age on leaf infection under controlled conditions. On potato dextrose agar, germination of conidia was usually polar. Growth was minimal at 5 and 10°C, increased at 15 and 20°C, was maximal at 25°C and decreased at 30°C. Percentage of germinated conidia on inoculated blueberry leaves incubated in dark controlled-humidity chambers for 3 days (25°C) was 86.0, 90.5, 81.3, and 28.3 in free water, 100, 97.5 or 95% RH, respectively. Germination did not occur at 90 or 85% RH. Infection of inoculated plants, however, was not favored by free water, but rather by high RH (>95%) and a 14-h photoperiod (180 µmol/m2 per second). Infection failed in continuous darkness, continuous light, or continuous darkness followed by 4, 8, or 12 h of light. Light and scanning electron microscopy showed that hyphal penetration into stomata on abaxial leaf surfaces was strongly tropic. When germ tubes grew in close proximity to a stomate, a penetration hypha formed at ∼90° angles to the germ tube and took the closest path to the stomate. Stomatal penetration was usually direct, but occasionally appressorium-like hyphal swellings formed over stomatal openings. When inoculated plants were exposed to high RH (>95%) at various temperatures, infection occurred after 4 days at 10°C, after 3 days at 15°C and after 1 day at 20 and 25°C. Infection failed to occur at 30°C. Disease severity also increased with duration of the humid period. When leaves were examined microscopically, those that had been incubated for 6 days showed a substantially greater network of epiphytic growth with more stomatal penetrations compared with those incubated for 3 days. Infection was substantially reduced when the humid period was interrupted by alternating days of low RH (60%). Two-week-old leaves were 2.7 times more susceptible than 8-week-old leaves.


Assuntos
Ascomicetos , Mirtilos Azuis (Planta) , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Mirtilos Azuis (Planta)/microbiologia , Umidade , Esporos Fúngicos , Temperatura
10.
Environ Microbiol ; 23(10): 6038-6055, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33734550

RESUMO

We present the first worldwide study on the apple (Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.


Assuntos
Malus , Microbiota , Bactérias/genética , Frutas/microbiologia , Fungos/genética , Malus/microbiologia
11.
Phytopathology ; 111(9): 1560-1570, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33439032

RESUMO

Septoria leaf spot and stem canker is an important disease of lowbush blueberry, but the causal pathogen has not been accurately identified. Based on sequence analysis of the internal transcribed spacer, translation elongation factor 1 alpha, RNA polymerase II second largest subunit, 28S nuclear ribosomal DNA gene, and ß-tubulin genes, the pathogen aligns closely with the genus Sphaerulina. The phylogenetic analyses based on these loci demonstrate that while the pathogen is closely related to the species Sphaerulina amelanchier, it is sufficiently distinct to warrant a new species designation. No ascomata of the teleomorph were found; however, ascospores recovered from leaves fit, morphologically, with the genus Mycosphaerella. The morphological data also support a new species designation. Based on the host that this pathogen infects, we propose the name as Sphaerulina vaccinii and the disease as Sphaerulina leaf spot and stem canker. Under field conditions, it appears that initial inoculum originates from pycnidia on overwintered leaves and stem lesions (cankers) on fruiting stems. More than 90% of the initial inoculum was released during the flowering period from late May through June. Leaf spots began to appear in early June and disease severity increased in a linear manner over time. Secondary inoculum production from diseased foliage was minimal and not considered important epidemiologically. Defoliation resulting from disease began in early July and increased in a nonlinear manner thereafter. Manual defoliation of blueberry stems at various times prior to harvest showed the substantial extent to which premature defoliation by this disease can affect yield. Stem lesions were also shown to have an impact on yield, even though stems were not killed.


Assuntos
Mirtilos Azuis (Planta) , Frutas , Filogenia , Doenças das Plantas , Esporos Fúngicos
12.
Plant Dis ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761775

RESUMO

Moldy core is a fungal disease of apple fruits that is characterized by mycelial growth in the seed locules and is sometimes accompanied by penetration of the immediate surrounding flesh. The disease can go undetected until the fruit is cut open, as no external symptoms appear on the fruit. Alternaria, Aspergillus, Cladosporium, Coniothyrium, Epicoccum, Phoma and Stemphylium are some of the common pathogens associated with moldy core (Serdani et al. 2002; Gao et al. 2013; McLeod 2014). The disease is more common in apple cultivars with an open calyx, where spores may initiate infections during the growing season or at the post-harvest storage stage (Spotts et al. 1988). In 2018, a shipment of 'Sweet Tango' apples from New Zealand to Scotian Gold Co-operative Ltd., Nova Scotia, Canada, was found to be affected by moldy core. Moderate to severe moldy core symptoms were observed when 10 apples were cut open (Figure S1). In comparison, 'Sweet Tango' apples grown in Nova Scotia showed no moldy core symptoms when 10 random fruits were cut open. Small pieces of the diseased fruit tissue from the core region were surface-disinfected for 1 min in 1% NaOCl, rinsed three times with sterilized water and placed onto potato dextrose agar (PDA) dishes. The PDA dishes were incubated in dark at 22 oC and single spore isolation was carried out to fresh PDA dishes. These isolate produced colonies of regular shape, tan black with prominent white gray margin and gray colour conidia (Figure S2 AB). The colonies turn dark black after 3 weeks of growth on PDA. Mycelia were septate and conidia were oval or obclavate or club-shaped with a tapering end with 4-6 longitudinal and transverse septa (Figure S2 C-D). The size of conidia ranges from 12.5-20 x 8.7-12.5 µM on 20 days old PDA dishes. Based on the size and shape of conidia and other morphological characteristics the isolated fungi were identical to Alternaria spp. (Simmons 2007). To assess the identity of the isolated pathogen species by multi-locus sequence analysis, genomic DNA was extracted from the pure cultures of two isolates (5.8 and 8) using the E.Z.N.A. SP Fungal DNA Kit (Omega Bio-Tek). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH), major allergen (Alt a 1), OPA10-2, the internal transcribed spacer (ITS) region of ribosomal DNA and the translation elongation factor 1-α (TEF1-α) region from two Alternaria spp. isolates (5.8 and 8) were amplified and sequenced using primers gpd1/2 (Berbee et al. 1999), A21F/A21R (Gabriel 2015), OPA10-2/ OPA10-2L (Andrew et al. 2009), ITS1/ITS4 (White et al. 1990) and EF1-up /EF1-low (O'Donnell et al. 1998) respectively. The resulting sequences of both isolates were deposited in the NCBI GenBank (GAPDH; MW411052, MW411053, Alt a 1; MW411050, MW411051, OPA10-2; MW415762, MW415763, ITS; MK140445, MT225559, TEF1-α; MT305773 and MT305774 ). Sequences of GAPDH, Alt a 1, OPA-10-2, ITS and TEF1-α genes of both isolates were identical to each other and showed 100 %, 100 %, 99.21 %, 100% and 100% identity to A. arborescens S. (AY278810.1, AY563303.1, KP124712.1, KY965831.1, KY965831.1) respectively. Identity with reference strain CBS 102605 confirms that both of the isolated strains 5.8 and 8 are A. arborescens. The pathogenicity of the two A. arborescens isolates were confirmed by artificially inoculating healthy 'Sweet Tango' fruit by dispensing the conidial suspension directly on the seed locule. Briefly, surface-disinfected fruits were air-dried for 5 min and then peeled using a sterilized knife and cut transversally. Each half of the fruit was inoculated with 100 µl of conidial suspensions (∼1 × 104 conidia/ml) in potato dextrose broth (PDB) and incubated at 22 °C in a humid chamber for 7-10 days, or until symptoms with visible mycelial growth were observed. The control fruits were treated with 100 µl of sterilized PDB. Both A. arborescens isolates produced visible moldy core symptoms on the inoculated 'Sweet Tango' fruits, whereas no symptoms were observed on the control fruits (Figure S1). The experiment was repeated three times with at least three replicates with similar results. A. arborescens was successfully re-isolated from the artificially-inoculated fruits to complete Koch's postulates. To our knowledge, this is the first report of Alternaria arborescens causing moldy core disease in 'Sweet Tango' apples from New Zealand. Acknowledgments We thank Eric Bevis for his help in sample preparation for DNA sequencing, Willy Renderos for pathogenicity assay. We also thank Joan Hebb (Scotian Gold Cooperative Ltd.,) for providing the apple sample for this study. This research was made possible through financial support from Agriculture and Agri-Food Canada. The authors(s) declare no conflict of interest. Literature Cited Andrew M., Peever T.L., Pryor B.M. An expanded multilocus phylogeny does not resolve species among the small-spored Alternaria species complex. 2009. Mycologia. 101:95-109. Berbee, M. L. et al. 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences Mycologia. 91:964. Gabriel, M.F. I. Postigo, A. Gutiérrez-Rodríguez, E. Suñén, C.T. Tomaz, J. Martínez 2015. Development of a PCR-based tool for detecting immunologically relevant Alt a 1 and Alt a 1 homologue coding sequences. Medical Mycology. 53 (6):636-642. Gao, L. L., Zhang, Q., Sun, X. Y., Jiang, L., Zhang, R., Sun, G. Y., Zha, Y. L., and Biggs, A. R. 2013. Etiology of moldy core, core browning, and core rot of Fuji apple in China. Plant Dis. 97:510-516. Kerry, O'Donnell, H.C. Kistler, E. Cigelnik, R.C. Ploetz. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. PNAS. 95: 2044-2049. McLeod, A. 2014. Moldy core and core rots. Pages 40-41 in: Compendium of Apple and Pear Diseases and Pests, 2nd ed. T. B. Sutton, H. S. Aldwinckle, A. M. Agnello, and J. F. Walgenbach, eds. American Phytopathological Society, St Paul, MN. Serdani, M., Kang, J. C., Peever, T. L., Andersen, B., and Crous, P. W. 2002. Characterization of Alternaria species groups associated with core rot of apples in South Africa. Mycol. Res. 106:561-569. Simmons, E. G. 2007. Alternaria: an identification manual. CBS Biodiversity Series. 6:780 pp. Spotts, R. A., Holmes, R. J., and Washington, W. S. 1988. Factors affecting wet core rot of apples. Australas. Plant Pathol. 17:53-57. White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315-322 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds. San Diego, CA: Academic Press. Woudenberg, J. H. C., et al. 2015. Alternaria section Alternaria: Species, formae speciales or pathotypes. Stud. Mycol. 82:1-21.

13.
Genomics ; 112(5): 3762-3772, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32259573

RESUMO

Erwinia amylovora is a destructive pathogen of Rosaceous plants and an economic concern worldwide. Herein, we report 93 new E. amylovora genomes from North America, Europe, the Mediterranean, and New Zealand. This new genomic information demonstrates the existence of three primary clades of Amygdaloideae (apple and pear) infecting E. amylovora and suggests all three independently originate from North America. The comprehensive sequencing also identified and confirmed the presence of 7 novel plasmids ranging in size from 2.9 to 34.7 kbp. While the function of the novel plasmids is unknown, the plasmids pEAR27, pEAR28, and pEAR35 encoded for type IV secretion systems. The strA-strB gene pair and the K43R point mutation at codon 43 of the rpsL gene have been previously documented to confer streptomycin resistance. Of the sequenced isolates, rpsL-based streptomycin resistance was more common and was found with the highest frequency in the Western North American clade.


Assuntos
Resistência Microbiana a Medicamentos , Erwinia amylovora/genética , Genoma Bacteriano , Filogenia , Plasmídeos , Estreptomicina/farmacologia , Erwinia amylovora/classificação
14.
Sensors (Basel) ; 19(5)2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30862062

RESUMO

Wearable biosensors attract significant interest for their capabilities in real-time monitoring of wearers' health status, as well as the surrounding environment. Sensor patches are embedded onto the human epidermis accompanied by data readout and signal conditioning circuits with wireless communication modules for transmitting data to the computing devices. Wearable sensors designed for recognition of various biomarkers in human epidermis fluids, such as glucose, lactate, pH, cholesterol, etc., as well as physiological indicators, i.e., pulse rate, temperature, breath rate, respiration, alcohol, activity monitoring, etc., have potential applications both in medical diagnostics and fitness monitoring. The rapid developments in solution-based nanomaterials offered a promising perspective to the field of wearable sensors by enabling their cost-efficient manufacturing through printing on a wide range of flexible polymeric substrates. This review highlights the latest key developments made in the field of wearable sensors involving advanced nanomaterials, manufacturing processes, substrates, sensor type, sensing mechanism, and readout circuits, and ends with challenges in the future scope of the field. Sensors are categorized as biological and fluidic, mounted directly on the human body, or physiological, integrated onto wearable substrates/gadgets separately for monitoring of human-body-related analytes, as well as external stimuli. Special focus is given to printable materials and sensors, which are key enablers for wearable electronics.


Assuntos
Técnicas Biossensoriais/métodos , Eletrônica , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Impressão Tridimensional , Temperatura
15.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857249

RESUMO

A self-powered device for human activity monitoring and energy harvesting for Internet of Things (IoT) devices is proposed. The self-powered device utilizes flexible Nano-generators (NGs), flexible diodes and off-the-shelf capacitors. During footsteps the NGs generate an AC voltage then it is converted into DC using rectifiers and the DC power is stored in a capacitor for powering the IoT devices. Polydimethylsiloxane (PDMS) and zinc stannate (ZnSnO3) composite is utilized for the NG active layer, indium tin oxide (ITO) and aluminum (Al) are used as the bottom and top electrodes, respectively. Four diodes are fabricated on the bottom electrode of the NG and connected in bridge rectifier configuration. A generated voltage of 18 Vpeak was achieved with a human footstep. The self-powered smart device also showed excellent robustness and stable energy scavenger from human footsteps. As an application we demonstrate human activity detection and energy harvesting for IoT devices.


Assuntos
Nanotecnologia/métodos , Alumínio , Eletrodos , Desenho de Equipamento , Humanos , Compostos de Estanho
16.
Plant Biotechnol J ; 16(2): 354-366, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28640975

RESUMO

Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2 O2 ) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2 O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.


Assuntos
Secas , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética
17.
J Exp Bot ; 69(9): 2319-2331, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29300919

RESUMO

Strigolactones (SLs) are a new class of phytohormones that also act as germination stimulants for root parasitic plants, such as Striga spp., and as branching factors for symbiotic arbuscular mycorrhizal fungi. Sources for natural SLs are very limited. Hence, efficient and simple SL analogs are needed for elucidating SL-related biological processes as well as for agricultural applications. Based on the structure of the non-canonical SL methyl carlactonoate, we developed a new, easy to synthesize series of analogs, termed methyl phenlactonoates (MPs), evaluated their efficacy in exerting different SL functions, and determined their affinity for SL receptors from rice and Striga hermonthica. Most of the MPs showed considerable activity in regulating plant architecture, triggering leaf senescence, and inducing parasitic seed germination. Moreover, some MPs outperformed GR24, a widely used SL analog with a complex structure, in exerting particular SL functions, such as modulating Arabidopsis roots architecture and inhibiting rice tillering. Thus, MPs will help in elucidating the functions of SLs and are promising candidates for agricultural applications. Moreover, MPs demonstrate that slight structural modifications clearly impact the efficiency in exerting particular SL functions, indicating that structural diversity of natural SLs may mirror a functional specificity.


Assuntos
Germinação/efeitos dos fármacos , Lactonas/metabolismo , Orobanche/efeitos dos fármacos , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Striga/efeitos dos fármacos , Lactonas/química , Reguladores de Crescimento de Plantas/química
18.
Nanotechnology ; 29(45): 455201, 2018 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30156565

RESUMO

With the view towards future non-volatile random access memories that can be integrated at a large scale, extensive study on resistive switching (RS) devices arranged in a crossbar array is currently underway. Although the crossbar array architecture offers relatively simple and acceptable scalability, the presence of sneak current is recognized as a critical issue that needs to be resolved at device level. In addressing this issue, we demonstrate a new type of RS device fabricated by combining graphene oxide (G-O) and zinc oxide (ZnO) with highly asymmetric current-voltage (I-V) characteristics depending on the polarity of bias voltage. The distinctive highly asymmetric I-V characteristics result from the presence of a hetero-junction interface formed between the G-O and ZnO layers. This hetero-junction manifests resistance in the range of GΩ under both forward and reverse bias voltage when the device is in the OFF state, in contrast, when the device is in the ON state, it exhibits resistance in the range of MΩ or kΩ under forward bias and GΩ under reverse bias. We propose to employ demonstrated RS devices with highly asymmetric I-V characteristics to mitigate adverse effects of the sneak current.

19.
Nanotechnology ; 28(17): 175402, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28278133

RESUMO

Recently, many researchers have been paying attention to nanogenerators (NGs) as energy sources for self-powered mirco-nano systems, and studying how to achieve their higher power generation. Hence, we propose a hybrid-type NG for harvesting both the piezoelectric and triboelectric effect simultaneously. In the proposed hybrid NG, the piezoelectric NG (PNG) and triboelectric NG (TENG) are fabricated using polydimethylsiloxane (PDMS) and perovskite zinc stannite (ZnSnO3) nanocubes with a high charge polarization of 59 uC cm-2 composite (PDMS + ZnSnO3) and UV surface-treated PDMS, respectively. To effectively combine a high output current of PNG and a high voltage of TENG, these two NGs are stacked upon each other, and separated by sponge spacers providing a uniform air gap for the triboelectric effect. In particular, this fabricated structure has a low Young's modulus for piezoelectricity. The proposed hybrid NG device effectively achieves a combined peak voltage of 300 V on an open circuit, a power density of 10.41 mW cm-2 at 1 MΩ load, and a maximum short circuit current density of 16 mA cm-2 at 50 Ω load. It is feasible that the proposed NG can be utilized as a source for various self-powered systems.

20.
PLoS Pathog ; 10(7): e1004223, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24992661

RESUMO

The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.


Assuntos
Proteínas Fúngicas/imunologia , Hordeum/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Ustilago/imunologia , Fatores de Virulência/imunologia , Proteínas Fúngicas/genética , Hordeum/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ustilago/genética , Ustilago/patogenicidade , Fatores de Virulência/genética , Zea mays/genética , Zea mays/imunologia , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA