Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Langmuir ; 40(11): 6004-6015, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451499

RESUMO

4-Chlorophenol (4CP) is a well-known environmental contaminant often detected in wastewater, generally arising from industrial processes such as chemical manufacture, pharmaceutical production, and pesticide formulation. 4CP is a matter of great concern since it is persistent and has the potential to have harmful impacts on both aquatic ecosystems and human health, owing to its hazardous and mutagenic properties. Hence, degradation of 4CP is of utmost significance. This research investigates the photocatalytic degradation of 4CP using a novel Z-scheme heterojunction nanocomposite composed of MXene and ZIF-9. The nanocomposite is synthesized through a two-step hydrothermal method and thoroughly characterized by using XRD, SEM, UV-visible spectroscopy, zeta potential, and electrochemical impedance spectroscopy studies, confirming successful fabrication with improved surface properties. The comparative photocatalytic degradation studies between pristine materials and the nanocomposite were performed, and significant enhancement in performance was observed. The effect of pH on the degradation efficiency is also explored and correlated with the surface charge. The Z-scheme photocatalysis mechanism is proposed, which is supported by time-resolved photoluminescence studies and scavenger experiments. The reusability of the nanocomposite is also evaluated. The study contributes to the development of efficient and sustainable photocatalysts for wastewater treatment.

2.
Environ Res ; 250: 118487, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365055

RESUMO

With the increasing population worldwide more wastewater is created by human activities and discharged into the waterbodies. This is causing the contamination of aquatic bodies, thus disturbing the marine ecosystems. The rising population is also posing a challenge to meet the demands of fresh drinking water in the water-scarce regions of the world, where drinking water is made available to people by desalination process. The fouling of composite membranes remains a major challenge in water desalination. In this innovative study, we present a novel probabilistic approach to analyse and anticipate the predominant fouling mechanisms in the filtration process. Our establishment of a robust theoretical framework hinges upon the utilization of both the geometric law and the Hermia model, elucidating the concept of resistance in series (RIS). By manipulating the transmembrane pressure, we demonstrate effective management of permeate flux rate and overall product quality. Our investigations reveal a decrease in permeate flux in three distinct phases over time, with the final stage marked by a significant reduction due to the accumulation of a denser cake layer. Additionally, an increase in transmembrane pressure leads to a correlative rise in permeate flux, while also exerting negative effects such as membrane ruptures. Our study highlights the minimal immediate impact of the intermediate blocking mechanism (n = 1) on permeate flux, necessitating continuous monitoring for potential long-term effects. Additionally, we note a reduced membrane selectivity across all three fouling types (n = 0, n = 1.5, n = 2). Ultimately, our findings indicate that the membrane undergoes complete fouling with a probability of P = 0.9 in the presence of all three fouling mechanisms. This situation renders the membrane unable to produce water at its previous flow rate, resulting in a significant reduction in the desalination plant's productivity. I have demonstrated that higher pressure values notably correlate with increased permeate flux across all four membrane types. This correlation highlights the significant role of TMP in enhancing the production rate of purified water or desired substances through membrane filtration systems. Our innovative approach opens new perspectives for water desalination management and optimization, providing crucial insights into fouling mechanisms and proposing potential strategies to address associated challenges.


Assuntos
Filtração , Membranas Artificiais , Purificação da Água , Purificação da Água/métodos , Purificação da Água/instrumentação , Filtração/métodos , Filtração/instrumentação , Incrustação Biológica/prevenção & controle
3.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298968

RESUMO

Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.


Assuntos
Franquincenso , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Humanos , Cobre/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Cinética , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
4.
Medicina (Kaunas) ; 59(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512069

RESUMO

Recent studies have highlighted the necessity to thoroughly evaluate medicinal plants due to their therapeutic potential. The current study delves into the phytochemical profile, antioxidant capacity, and hepatoprotective effect of Andrographis paniculata. The investigation specifically targets its effectiveness in mitigating liver dysfunction induced by carbon tetrachloride (CCl4) in Wistar albino rats, aiming to uncover its promising role as a natural remedy for liver-related ailments. A. paniculata leaf extract was screened for phytoconstituents and antioxidant and hepatoprotective effects in Wistar albino rats against CCl4-induced liver dysfunction. Phytochemical analysis revealed the presence of flavonoids, alkaloids, and phenolic compounds in all extracts. The phenolic concentration ranged from 10.23 to 19.52 mg gallic acid per gram of the sample, while the highest flavonoid concentration was found in the ethanol fraction (8.27 mg rutin equivalents per gram). The antioxidant activity varied from 10.23 to 62.23. GC-MS analysis identified several phytochemicals including octadecanoic acid, stigmasterol, phenanthrenecarboxylic acid, and others. Effects of the ethanol extract of A. paniculata were evaluated in four groups of animals. Biochemical estimations of serum glutamine oxaloacetate transaminase, serum glutamine pyruvate transaminase, and serum bilirubin were significantly higher (p < 0.05) in the CCl4-treated group. Treatment with 300 mg/kg b.w. of the ethanol extract of A. paniculata significantly (p < 0.05) decreased these serum enzymes. Lipid peroxidation levels in carbon tetrachloride-treated animals showed a substantial (p < 0.05) rise when compared to untreated animals, while the lipid peroxidation levels were considerably (p < 0.05) reduced after treatment with ethanol extract at 300 mg/kg b.w. Liver biochemical catalase activities were significantly reduced in the carbon tetrachloride-treated animals. The results of this study conclusively demonstrate that A. paniculata extracts are a rich source of phytochemicals and possess significant antioxidant, free radical scavenging, and hepatoprotective properties.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Andrographis paniculata , Ratos Wistar , Tetracloreto de Carbono , Glutamina/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Fenóis/farmacologia , Fenóis/uso terapêutico , Fenóis/análise , Transaminases/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
5.
Int J Biol Macromol ; 256(Pt 1): 128312, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000589

RESUMO

In this study, we developed a label-free and ultrasensitive electrochemical biosensor for the detection of transferrin (Tf), an important serum biomarker of atransferrinemia. The biosensor was fabricated by using glassy carbon electrode (GCE) and modified with gold nanoparticles (AuNPs) via electroless deposition. The electrochemical characteristics of the GCE-AuNPs biosensors were characterized using cyclic voltammetry and electrochemical impedance spectroscopy analysis. Differential pulse voltammetry was used for quantitative evaluation of the Tf-antigen by recording the increase in the anodic peak current of GCE-AuNPs biosensor. The GCE-AuNPs biosensor demonstrates superior sensing performance for Tf-antigen fortified in buffer, with a wide linear range of 0.1 to 5000 µg/mL and a limit of detection of 0.18 µg/mL. The studied GCE-AuNPs biosensor showed excellent sensitivity, selectivity, long-term storage stability and simple sensing steps without pretreatment of clinical samples. This GCE-AuNPs biosensor indicates great potential for developing a Tf detection platform, which would be helpful in the early diagnosis of atransferrinemia. The developed GCE-AuNPs biosensor holds great potential in biomedical research related to point of care for the early diagnosis and monitoring of diseases associated with aberrant serum transferrin levels. These findings suggest that the GCE-AuNPs biosensor has great potential for detecting other serum biomarkers.


Assuntos
Técnicas Biossensoriais , Erros Inatos do Metabolismo dos Metais , Nanopartículas Metálicas , Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Transferrina , Técnicas Biossensoriais/métodos , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
6.
Front Chem ; 12: 1402563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831913

RESUMO

A significant amount of energy can be produced using renewable energy sources; however, storing massive amounts of energy poses a substantial obstacle to energy production. Economic crisis has led to rapid developments in electrochemical (EC) energy storage devices (EESDs), especially rechargeable batteries, fuel cells, and supercapacitors (SCs), which are effective for energy storage systems. Researchers have lately suggested that among the various EESDs, the SC is an effective alternate for energy storage due to the presence of the following characteristics: SCs offer high-power density (PD), improvable energy density (ED), fast charging/discharging, and good cyclic stability. This review highlighted and analyzed the concepts of supercapacitors and types of supercapacitors on the basis of electrode materials, highlighted the several feasible synthesis processes for preparation of metal oxide (MO) nanoparticles, and discussed the morphological effects of MOs on the electrochemical performance of the devices. In this review, we primarily focus on pseudo-capacitors for SCs, which mainly contain MOs and their composite materials, and also highlight their future possibilities as a useful application of MO-based materials in supercapacitors. The novelty of MO's electrode materials is primarily due to the presence of synergistic effects in the hybrid materials, rich redox activity, excellent conductivity, and chemical stability, making them excellent for SC applications.

7.
Micromachines (Basel) ; 15(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675340

RESUMO

Due to their exceptional optoelectronic properties, halide perovskites have emerged as prominent materials for the light-absorbing layer in various optoelectronic devices. However, to increase device performance for wider adoption, it is essential to find innovative solutions. One promising solution is incorporating carbon nanotubes (CNTs), which have shown remarkable versatility and efficacy. In these devices, CNTs serve multiple functions, including providing conducting substrates and electrodes and improving charge extraction and transport. The next iteration of photovoltaic devices, metal halide perovskite solar cells (PSCs), holds immense promise. Despite significant progress, achieving optimal efficiency, stability, and affordability simultaneously remains a challenge, and overcoming these obstacles requires the development of novel materials known as CNTs, which, owing to their remarkable electrical, optical, and mechanical properties, have garnered considerable attention as potential materials for highly efficient PSCs. Incorporating CNTs into perovskite solar cells offers versatility, enabling improvements in device performance and longevity while catering to diverse applications. This article provides an in-depth exploration of recent advancements in carbon nanotube technology and its integration into perovskite solar cells, serving as transparent conductive electrodes, charge transporters, interlayers, hole-transporting materials, and back electrodes. Additionally, we highlighted key challenges and offered insights for future enhancements in perovskite solar cells leveraging CNTs.

8.
Int J Biol Macromol ; 265(Pt 1): 130616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447842

RESUMO

The use of single-walled carbon nanotubes (SWCNTs) in biomedical applications is limited due to their inability to disperse in aqueous solutions. In this study, dispersed -COOH functionalized CNTs with N-succinylated chitosan (CS), greatly increasing the water solubility of CNTs and forming a uniformly dispersed nanocomposite solution of CNTs@CS. Coupling reagent EDC/NHS was used as a linker with the -COOH groups present on the N-succinylated chitosan which significantly improved the affinity of the CNTs for biomolecules. Myoglobin (Mb) is a promising biomarker for the precise assessment of cardiovascular risk, type 2 diabetes, metabolic syndrome, hypertension and several types of cancer. A high level of Mb can be used to diagnose the mentioned pathogenic diseases. The CNTs@CS-FET demonstrates superior sensing performance for Mb antigen fortified in buffer, with a wide linear range of 1 to 4000 ng/mL. The detection limit of the developed Mb immunosensor was estimated to be 4.2 ng/mL. The novel CNTs@CS-FET immunosensor demonstrates remarkable capability in detecting Mb without being affected by interferences from nonspecific antigens. Mb spiked serum showed a recovery rate of 100.262 to 118.55 % indicating great promise for Mb detection in clinical samples. The experimental results confirmed that the CNTs@CS-FET immunosensor had excellent selectivity, reproducibility and storage stability.


Assuntos
Técnicas Biossensoriais , Quitosana , Diabetes Mellitus Tipo 2 , Infarto do Miocárdio , Nanocompostos , Nanotubos de Carbono , Humanos , Mioglobina , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio , Biomarcadores , Técnicas Eletroquímicas/métodos
9.
Chemosphere ; 359: 142224, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723693

RESUMO

Environmental remediation has sought several innovative ways for the treatment of wastewater and captivated researchers around the globe towards it. Through this study, we aim to proceed with the efforts to foster sustainable and feasible ways for the treatment of wastewater. In this work, we report the sol-gel synthesis of CuO/MgO/ZnO nanocomposite and carry out their systematic characterization with the help of state-of-the-art analytical techniques, such as FTIR, SEM, TEM, PL, XRD, Raman, and AFM. The SEM along with TEM and AFM provided useful insights into the surface morphology of the synthesized nanocomposite on both 2D and 3D surfaces and concluded the well-dispersed behavior of the nanocomposite. The characteristic functional groups responsible for carrying out the reaction of Cu-O, Mg-O, and Zn-O were identified by FTIR spectroscopy. On the other hand, crystal size, dislocation density, and microstrain of the nanocomposite were calculated by XRD. For optical studies, photoluminescence spectroscopy was performed. Once the characterization of the nanocomposite was done, they were eventually treated against the toxic organic dye, methylene blue. The calculated rate constant values of k for CuO was 2.48 × 10-3 min-1, for CuO/MgO (2.04 × 10-3 min-1), for CuO/ZnO (1.82 × 10-3 min-1) and CuO/MgO/ZnO was found to be 2.00 × 10-3 min-1. It has become increasingly evident that nanotechnology can be used in various facets of modern life, and its implementation in wastewater treatment has recently received much attention.


Assuntos
Cobre , Recuperação e Remediação Ambiental , Óxido de Magnésio , Nanocompostos , Óxido de Zinco , Nanocompostos/química , Óxido de Zinco/química , Cobre/química , Recuperação e Remediação Ambiental/métodos , Catálise , Óxido de Magnésio/química , Luz , Águas Residuárias/química , Poluentes Químicos da Água/química , Azul de Metileno/química
10.
ACS Omega ; 9(10): 11459-11470, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497024

RESUMO

In this study, novel adsorbents were developed by functionalizing multiwalled carbon nanotubes with frankincense (Fr-fMWCNT) and adding iron oxide (Fe3O4) to the adsorbent (Fr-fMWCNT-Fe3O4). The morphology, surface characteristics, and chemical nature of the synthesized samples were analyzed by using various characterization techniques. The prepared adsorbents were then applied for the elimination of the toxic dye, crystal violet (CV), from water-based solutions by employing a batch adsorption method. The effectiveness of materials for the adsorption of CV was investigated by tuning various effective experimental parameters (adsorbent dosage, dye quantity, pH, and contact time). In order to derive adsorption isotherms, the Langmuir and Freundlich adsorption models were investigated and compared. The Fr-fMWCNT and Fr-fMWCNT-Fe3O4 were found to remove 85 and 95% of the CV dye within 30 min of the adsorption experiment at pH 6, respectively. It was found that a pseudo-second-order reaction rate was consistent with the experimental adsorption kinetics. The equilibrium data demonstrated that the Langmuir model adequately explained the adsorption behavior of the CV dye on the Fr-fMWCNT and Fr-fMWCNT-Fe3O4 surfaces, respectively. According to the Langmuir study, the highest adsorption capacities of the dye are 434 mg/g for Fr-fMWCNT and 500 mg/g for Fr-fMWCNT-Fe3O4. Remediation of the CV dye using our novel composite materials has not been reported previously in the literature. The synthesized Fr-fMWCNT and Fr-fMWCNT-Fe3O4 adsorbents can be economical and green materials for the adsorptive elimination of CV dye from wastewater.

11.
Expert Opin Drug Saf ; : 1-6, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37908194

RESUMO

BACKGROUND: The safety reports arising currently on nimesulide are divulging the jeopardy of skin and subcutaneous tissue disorders (SSTDs). RESEARCH DESIGN AND METHODS: The global individual case safety reports on nimesulide-induced SSTDs available at VigiBase® were analyzed up to 31 March 2023. Disproportionality analyses viz. Proportional Reporting Ratio (PRR), Reporting Odds Ratio (ROR), and Information Component (IC) were performed to identify the quantitative signals. RESULTS: Out of 33,983,649 de-duplicated cases available in the VigiBase®, 1,664,134 (4.9%) were in pediatrics below 12 years of age. Among these, cases attributed to nimesulide were 251, of which 126 (50.2%) were on SSTDs. Among all the SSTDs reported for nimesulide, the serious reactions like urticaria [PRR = 2.3; lower bound (LB) ROR = 1.7; IC025 = 0.6], Stevens-Johnson syndrome (SJS) [PRR = 28.3; LB ROR = 18.2; IC025 = 3.2], angioedema [PRR = 7.5; LB ROR = 4.5; IC025 = 1.7], and toxic epidermal necrolysis (TEN) [PRR = 27.4; LB ROR = 11.5; IC025 = 1.5] were identified as potential signals. In comparison with non-SSTDs, SSTDs reported for nimesulide were significantly higher among children (2-11 years, 90.5%), from India (38.9%), and by the physician (60.3%). CONCLUSIONS: Identifying the giant quantitate association between nimesulide and serious & life-threatening reactions like SJS and TEN, precautionary measures need to be taken by the regulatory authorities to prevent nimesulide-induced SSTDs among the pediatric population.

12.
Heliyon ; 9(1): e12685, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660457

RESUMO

Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.

13.
CNS Neurol Disord Drug Targets ; 17(6): 421-429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29745345

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by the accumulation and deposition of ß-amyloid peptides leading to a progressive neuronal damage and cell loss. Besides several hypotheses for explaining the neurodegenerative mechanisms, oxidative stress has been considered to be one of them. Till date, there is no cure for AD, but the pathogenesis of the disease could be delayed by the use of natural antioxidants. In this context, we decided to study the effect of kaempferol against the transgenic Drosophila expressing human amyloid beta-42. METHOD: The AD flies were allowed to feed on the diet having 10, 20, 30 and 40µM of kaempferol for 30 days. After 30 days of exposure, the amyloid beta flies were studied for their climbing ability and Aversive Phototaxis Suppression assay. Amyloid beta flies head homogenate was prepared for estimating the oxidative stress markers, Caspase and acetylcholinesterase activity. RESULTS: The results of the present study reveal that the exposure of AD flies to kaempferol delayed the loss of climbing ability, memory, reduced the oxidative stress and acetylcholinesterase activity. CONCLUSION: Kaempferol could be used as a possible therapeutic agent against the progression of the Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antipsicóticos/uso terapêutico , Quempferóis/uso terapêutico , Acetilcolinesterase/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Animais Geneticamente Modificados , Caspases/metabolismo , Modelos Animais de Doenças , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Fragmentos de Peptídeos/metabolismo , Fototaxia/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Carbonilação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Curr Med Chem ; 20(38): 4859-87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24295405

RESUMO

Systemic fungal infections of humans and economically important animals are increasingly common throughout the world. These infections are severe and often hard to treat with existing safe, oral medications. Thus there has been increasing research on alternatives resulting in study of natural and synthetic inhibitors of 1,3-ß-Glucan synthase (GS) and chitin synthase (CS)-enzymes important in the biosynthesis of fungal cell walls that are not utilized in human biochemistry. Some such agents have recently been introduced into parenteral clinical use. There is hope that safe agents of this type with oral activity may yet emerge. This active area of research and its historic context with alternative agents is reviewed herein.


Assuntos
Antifúngicos/uso terapêutico , Quitina Sintase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Glucosiltransferases/antagonistas & inibidores , Micoses/tratamento farmacológico , Aminas/química , Aminas/uso terapêutico , Antifúngicos/farmacologia , Azóis/química , Azóis/uso terapêutico , Quitina Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Fungos/efeitos dos fármacos , Glucosiltransferases/metabolismo , Glicosídeos/química , Glicosídeos/uso terapêutico , Humanos , Oxazinas/química , Oxazinas/uso terapêutico , Peptídeos Cíclicos/química , Peptídeos Cíclicos/uso terapêutico
15.
Phytochemistry ; 77: 238-44, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22281382

RESUMO

A pentacyclic triterpene, oleanderocioic acid, two flavonoidal glycosides, quercetin-5-O-[α-L-rhamnopyranosyl-(1→6)]-ß-D-glucopyranoside and kaempferol-5-O-[α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranoside, and a cardenolide, oleandigoside, together with 11 known compounds, were isolated from the leaves of Nerium oleander. Their structures were elucidated on the basis of spectroscopic analysis. The growth inhibitory and cytotoxic activities of eight compounds were evaluated against the MCF-7 human breast cancer cell line using a sulforhodamine B assay. Three compounds, oleandrin, odoroside A and B were further assayed using a panel of 57 human cancer cell lines.


Assuntos
Antineoplásicos Fitogênicos/química , Cardenolídeos/química , Flavonoides/química , Glicosídeos/química , Nerium/química , Triterpenos Pentacíclicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/toxicidade , Cardenolídeos/isolamento & purificação , Cardenolídeos/toxicidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Flavonoides/isolamento & purificação , Flavonoides/toxicidade , Glicosídeos/isolamento & purificação , Glicosídeos/toxicidade , Humanos , Células MCF-7 , Nerium/metabolismo , Ressonância Magnética Nuclear Biomolecular , Triterpenos Pentacíclicos/isolamento & purificação , Triterpenos Pentacíclicos/toxicidade , Extratos Vegetais/química , Folhas de Planta/química
16.
Nat Prod Commun ; 4(4): 473-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19475987

RESUMO

The azadirachtin, salannin, nimbin, deacetylnimbin, azadiradione and epoxyazadiradione contents were determined by HPLC in the fractions prepared from the kernel of neem fruits (Azadirachta indica) collected at different ripening stages. The fully mature fruit (yellow fruits) kernels contained the highest concentration of azadirachtin, nimbin and salannin, whereas the concentration of azadiradione (NC) and epoxyazadiradione (NL) was high in the unripe green berries. The toxicity of the fractions (KEA-1 to KEA-5) obtained from the kernels collected at successive intervals, as well as of the pure limonoids referred to above was evaluated against 3rd instar larvae of Aedes aegypti L. (wild strain). It was observed that the toxicity of these fractions increased with the maturity of the fruits. An interesting observation was that the toxicities of KEA-3 to KEA-5 are comparable and the concentration of all the major limonoids is optimum in KEA-3, which suggested that these exert a joint effect against Aedes aegypti.


Assuntos
Aedes , Azadirachta/química , Frutas/química , Animais , Azadirachta/crescimento & desenvolvimento , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Frutas/crescimento & desenvolvimento , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/metabolismo , Larva , Dose Letal Mediana , Limoninas/química , Limoninas/isolamento & purificação , Limoninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA