Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 376(4): 330-341, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-25830322

RESUMO

BACKGROUND: The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. METHODS: We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. RESULTS: The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. CONCLUSIONS: This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSV∆G-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408 .).


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Adulto , Anticorpos Antivirais/sangue , Método Duplo-Cego , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática , Feminino , Doença pelo Vírus Ebola/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Soroconversão , Vacinas Atenuadas/imunologia , Vírus da Estomatite Vesicular Indiana , Proteínas do Envelope Viral/isolamento & purificação , Viremia
2.
Nature ; 514(7520): 47-53, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25171469

RESUMO

Without an approved vaccine or treatments, Ebola outbreak management has been limited to palliative care and barrier methods to prevent transmission. These approaches, however, have yet to end the 2014 outbreak of Ebola after its prolonged presence in West Africa. Here we show that a combination of monoclonal antibodies (ZMapp), optimized from two previous antibody cocktails, is able to rescue 100% of rhesus macaques when treatment is initiated up to 5 days post-challenge. High fever, viraemia and abnormalities in blood count and blood chemistry were evident in many animals before ZMapp intervention. Advanced disease, as indicated by elevated liver enzymes, mucosal haemorrhages and generalized petechia could be reversed, leading to full recovery. ELISA and neutralizing antibody assays indicate that ZMapp is cross-reactive with the Guinean variant of Ebola. ZMapp exceeds the efficacy of any other therapeutics described so far, and results warrant further development of this cocktail for clinical use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Imunização Passiva , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Guiné , Cobaias , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
3.
CMAJ ; 189(24): E819-E827, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630358

RESUMO

BACKGROUND: The 2013-2016 Ebola virus outbreak in West Africa was the most widespread in history. In response, alive attenuated recombinant vesicular stomatitis virus (rVSV) vaccine expressing Zaire Ebolavirus glycoprotein (rVSVΔG-ZEBOV-GP) was evaluated in humans. METHODS: In a phase 1, randomized, dose-ranging, observer-blind, placebo-controlled trial, healthy adults aged 18-65 years were randomized into 4 groups of 10 to receive one of 3 vaccine doses or placebo. Follow-up visits spanned 180 days postvaccination for safety monitoring, immunogenicity testing and any rVSV virus shedding. RESULTS: Forty participants were injected with rVSVΔG-ZEBOV-GP vaccine (n = 30) or saline placebo (n = 10). No serious adverse events related to the vaccine or participant withdrawals were reported. Solicited adverse events during the 14-day follow-up period were mild to moderate and self-limited, with the exception of injection-site pain and headache. Viremia following vaccination was transient and no longer detectable after study day 3, with no virus shedding in saliva or urine. All vaccinated participants developed serum immunoglobulin G (IgG), as measured by Ebola virus envelope glycoprotein-based enzyme-linked immunosorbent assay (ELISA). Immunogenicity was comparable across all dose groups, and sustained IgG titers were detectable through to the last visit, at study day 180. INTERPRETATION: In this phase 1 study, there were no safety concerns after a single dose of rVSVΔG-ZEBOV-GP vaccine. IgG ELISA showed persistent high titers at 180 days postimmunization. There was a period of reactogenicity, but in general, the vaccine was well tolerated. This study provides evidence of the safety and immunogenicity of rVSVΔG-ZEBOV-GP vaccine and importance of its further investigation. Trial registration: Clinical-Trials.gov no., NCT02374385.


Assuntos
Vacinas contra Ebola/administração & dosagem , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Adolescente , Adulto , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Canadá , Método Duplo-Cego , Ebolavirus , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Masculino , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Análise de Regressão , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vírus da Estomatite Vesicular Indiana , Proteínas do Envelope Viral/genética , Adulto Jovem
4.
J Infect Dis ; 212 Suppl 2: S234-41, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25957966

RESUMO

BACKGROUND: The 2005 outbreak of Marburg virus (MARV) infection in Angola was the most lethal MARV infection outbreak in history, with a case-fatality rate (90%) similar to that for Zaire ebolavirus (EBOV) infection. However, very little is known about the pathogenicity of MARV Angola, as few studies have been conducted to date. Therefore, the immune response was examined in MARV Angola-infected nonhuman primates. METHODS: Cynomolgus macaques were infected with MARV Angola and monitored for survival. The effect of MARV Angola on the immune system was examined by immunophenotyping whole-blood and by analyzing cytokine and chemokine levels in plasma and spleen specimens, using flow cytometry. RESULTS: The prominent clinical findings were rapid onset of disease and death (mean time after infection, 6.7 days), fever, depression, anorexia, petechial rash, and lymphopenia. Specifically, T, B, and natural killer cells were severely depleted in the blood by day 6. The typical cytokine storm was present, with levels of interferon γ, tumor necrosis factor, interleukin 6, and CCL2 rising in the blood early during infection. CONCLUSIONS: MARV Angola displayed the same virulence and disease pathology as EBOV. MARV Angola appears to cause a more rapid onset and severe outcome of infection than other MARV strains.


Assuntos
Doença do Vírus de Marburg/imunologia , Marburgvirus/imunologia , Primatas/imunologia , Angola , Animais , Quimiocina CCL2/imunologia , Modelos Animais de Doenças , Ebolavirus/imunologia , Feminino , Interferon gama/imunologia , Interleucina-6/imunologia , Linfócitos/imunologia , Linfócitos/virologia , Macaca/imunologia , Macaca/virologia , Doença do Vírus de Marburg/virologia , Primatas/virologia , Baço/imunologia , Baço/virologia , Fator de Necrose Tumoral alfa/imunologia , Virulência/imunologia
5.
JAMA ; 313(12): 1249-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25742465

RESUMO

IMPORTANCE: Safe and effective vaccines and drugs are needed for the prevention and treatment of Ebola virus disease, including following a potentially high-risk exposure such as a needlestick. OBJECTIVE: To assess response to postexposure vaccination in a health care worker who was exposed to the Ebola virus. DESIGN AND SETTING: Case report of a physician who experienced a needlestick while working in an Ebola treatment unit in Sierra Leone on September 26, 2014. Medical evacuation to the United States was rapidly initiated. Given the concern about potentially lethal Ebola virus disease, the patient was offered, and provided his consent for, postexposure vaccination with an experimental vaccine available through an emergency Investigational New Drug application. He was vaccinated on September 28, 2014. INTERVENTIONS: The vaccine used was VSVΔG-ZEBOV, a replicating, attenuated, recombinant vesicular stomatitis virus (serotype Indiana) whose surface glycoprotein gene was replaced by the Zaire Ebola virus glycoprotein gene. This vaccine has entered a clinical trial for the prevention of Ebola in West Africa. RESULTS: The vaccine was administered 43 hours after the needlestick occurred. Fever and moderate to severe symptoms developed 12 hours after vaccination and diminished over 3 to 4 days. The real-time reverse transcription polymerase chain reaction results were transiently positive for vesicular stomatitis virus nucleoprotein gene and Ebola virus glycoprotein gene (both included in the vaccine) but consistently negative for Ebola virus nucleoprotein gene (not in the vaccine). Early postvaccination cytokine secretion and T lymphocyte and plasmablast activation were detected. Subsequently, Ebola virus glycoprotein-specific antibodies and T cells became detectable, but antibodies against Ebola viral matrix protein 40 (not in the vaccine) were not detected. CONCLUSIONS AND RELEVANCE: It is unknown if VSVΔG-ZEBOV is safe or effective for postexposure vaccination in humans who have experienced a high-risk occupational exposure to the Ebola virus, such as a needlestick. In this patient, postexposure vaccination with VSVΔG-ZEBOV induced a self-limited febrile syndrome that was associated with transient detection of the recombinant vesicular stomatitis vaccine virus in blood. Strong innate and Ebola-specific adaptive immune responses were detected after vaccination. The clinical syndrome and laboratory evidence were consistent with vaccination response, and no evidence of Ebola virus infection was detected.


Assuntos
Vacinas contra Ebola/uso terapêutico , Doença pelo Vírus Ebola/prevenção & controle , Ferimentos Penetrantes Produzidos por Agulha/complicações , Profilaxia Pós-Exposição , Adulto , Vacinas contra Ebola/efeitos adversos , Ebolavirus/genética , Ebolavirus/imunologia , Febre/etiologia , Vetores Genéticos , Doença pelo Vírus Ebola/transmissão , Humanos , Masculino , Médicos , Serra Leoa , Vacinação , Vesiculovirus
6.
J Virol ; 87(13): 7754-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23616649

RESUMO

Monoclonal antibodies (MAbs) are currently a promising treatment strategy against Ebola virus infection. This study combined MAbs with an adenovirus-vectored interferon (DEF201) to evaluate the efficacy in guinea pigs and extend the treatment window obtained with MAbs alone. Initiating the combination therapy at 3 days postinfection (d.p.i.) provided 100% survival, a significant improvement over survival with either treatment alone. The administration of DEF201 within 2 d.p.i. permits later MAb use, with protective efficacy observed up to 8 d.p.i.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Interferon-alfa/uso terapêutico , Adenoviridae , Animais , Vetores Genéticos/genética , Cobaias , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Nature ; 445(7125): 319-23, 2007 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17230189

RESUMO

The 1918 influenza pandemic was unusually severe, resulting in about 50 million deaths worldwide. The 1918 virus is also highly pathogenic in mice, and studies have identified a multigenic origin of this virulent phenotype in mice. However, these initial characterizations of the 1918 virus did not address the question of its pathogenic potential in primates. Here we demonstrate that the 1918 virus caused a highly pathogenic respiratory infection in a cynomolgus macaque model that culminated in acute respiratory distress and a fatal outcome. Furthermore, infected animals mounted an immune response, characterized by dysregulation of the antiviral response, that was insufficient for protection, indicating that atypical host innate immune responses may contribute to lethality. The ability of influenza viruses to modulate host immune responses, such as that demonstrated for the avian H5N1 influenza viruses, may be a feature shared by the virulent influenza viruses.


Assuntos
Imunidade Inata/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/imunologia , Influenza Humana/virologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Animais , Quimiocinas/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/sangue , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Taxa de Sobrevida , Fatores de Tempo , Replicação Viral
8.
Clin Immunol ; 141(2): 218-27, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21925951

RESUMO

Zaire ebolavirus (ZEBOV) can be transmitted by human-to-human contact and causes acute haemorrhagic fever with case fatality rates up to 90%. There are no effective therapeutic or prophylactic treatments available. The sole transmembrane glycoprotein (GP) is the key target for developing neutralizing antibodies. In this study, recombinant VSVΔG/ZEBOVGP was used to generate monoclonal antibodies (MAbs) against the ZEBOV GP. A total of 8 MAbs were produced using traditional hybridoma cell fusion technology, and then characterized by ELISA using ZEBOV VLPs, Western blotting, an immunofluorescence assay, and immunoprecipitation. All 8 MAbs worked in IFA and IP, suggesting that they are all conformational MAbs, however six of them recognized linearized epitopes by WB. ELISA results demonstrated that one MAb bound to a secreted GP (sGP 1-295aa); three bind to a part of the mucin domain (333-458aa); three MAbs recognized epitopes on the C-terminal domain of GP1 (296-501aa); and one bound to full length GP (VLPs/GP1,2 ΔTm). Using a mouse model these MAbs were evaluated for their therapeutic capacity during a lethal infection. All 8 MAb improved survival rates by 33%-100% against a high dose lethal challenge with mouse-adapted ZEBOV. This work has important implications for further development of vaccines and immunotherapies for ZEBOV infection.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Ebolavirus/imunologia , Imunoglobulina G/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais Murinos/biossíntese , Anticorpos Antivirais/biossíntese , Especificidade de Anticorpos , Western Blotting , Relação Dose-Resposta Imunológica , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Doença pelo Vírus Ebola/terapia , Humanos , Hibridomas/imunologia , Imunização Passiva , Imunoglobulina G/biossíntese , Imunoprecipitação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/química
9.
J Virol ; 84(21): 11089-100, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739514

RESUMO

Tick-borne Crimean-Congo hemorrhagic fever virus (CCHFV) causes a severe hemorrhagic syndrome in humans but not in its vertebrate animal hosts. The pathogenesis of the disease is largely not understood due to the lack of an animal model. Laboratory animals typically show no overt signs of disease. Here, we describe a new small-animal model to study CCHFV pathogenesis that manifests clinical disease, similar to that seen in humans, without adaptation of the virus to the host. Our studies revealed that mice deficient in the STAT-1 signaling molecule were highly susceptible to infection, succumbing within 3 to 5 days. After CCHFV challenge, mice exhibited fever, leukopenia, thrombocytopenia, and highly elevated liver enzymes. Rapid viremic dissemination and extensive replication in visceral organs, mainly in liver and spleen, were associated with prominent histopathologic changes in these organs. Dramatically elevated proinflammatory cytokine levels were detected in the blood of the animals, suggestive of a cytokine storm. Immunologic analysis revealed delayed immune cell activation and intensive lymphocyte depletion. Furthermore, this study also demonstrated that ribavirin, a suggested treatment in human cases, protects mice from lethal CCHFV challenge. In conclusion, our data demonstrate that the interferon response is crucial in controlling CCHFV replication in this model, and this is the first study that offers an in-depth in vivo analysis of CCHFV pathophysiology. This new mouse model exhibits key features of fatal human CCHF, proves useful for the testing of therapeutic strategies, and can be used to study virus attenuation.


Assuntos
Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Fator de Transcrição STAT1/deficiência , Animais , Suscetibilidade a Doenças , Febre Hemorrágica da Crimeia/patologia , Humanos , Camundongos , Camundongos Knockout
10.
Fluids Barriers CNS ; 15(1): 15, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29759080

RESUMO

Zika virus (ZIKV) is a flavivirus that is highly neurotropic causing congenital abnormalities and neurological damage to the central nervous systems (CNS). In this study, we used a human induced pluripotent stem cell (iPSC)-derived blood brain barrier (BBB) model to demonstrate that ZIKV can infect brain endothelial cells (i-BECs) without compromising the BBB barrier integrity or permeability. Although no disruption to the BBB was observed post-infection, ZIKV particles were released on the abluminal side of the BBB model and infected underlying iPSC-derived neural progenitor cells (i-NPs). AXL, a putative ZIKV cellular entry receptor, was also highly expressed in ZIKV-susceptible i-BEC and i-NPs. This iPSC-derived BBB model can help elucidate the mechanism by which ZIKV can infect BECs, cross the BBB and gain access to the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Zika virus/metabolismo , Permeabilidade Capilar/fisiologia , Técnicas de Cultura de Células , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/virologia , Microvasos/metabolismo , Microvasos/virologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
11.
Viral Immunol ; 28(1): 51-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25494457

RESUMO

Members of the species Zaire ebolavirus cause severe hemorrhagic fever with up to a 90% mortality rate in humans. The VSVΔG/EBOV GP vaccine has provided 100% protection in the mouse, guinea pig, and nonhuman primate (NHP) models, and has also been utilized as a post-exposure therapeutic to protect mice, guinea pigs, and NHPs from a lethal challenge of Ebola virus (EBOV). EBOV infection causes rapid mortality in human and animal models, with death occurring as early as 6 days after infection, suggesting a vital role for the innate immune system to control the infection before cells of the adaptive immune system can assume control. Natural killer (NK) cells are the predominant cell of the innate immune response, which has been shown to expand with VSVΔG/EBOV GP treatment. In the current study, an in vivo mouse model of the VSVΔG/EBOV GP post-exposure treatment was used for a mouse adapted (MA)-EBOV infection, to determine the putative VSVΔG/EBOV GP-induced protective mechanism of NK cells. NK depletion studies demonstrated that mice with NK cells survive longer in a MA-EBOV infection, which is further enhanced with VSVΔG/EBOV GP treatment. NK cell mediated cytotoxicity and IFN-γ secretion was significantly higher with VSVΔG/EBOV GP treatment. Cell mediated cytotoxicity assays and perforin knockout mice experiments suggest that there are perforin-dependent and -independent mechanisms involved. Together, these data suggest that NK cells play an important role in VSVΔG/EBOV GP-induced protection of EBOV by increasing NK cytotoxicity, and IFN-γ secretion.


Assuntos
Portadores de Fármacos , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Células Matadoras Naturais/imunologia , Vesiculovirus/genética , Proteínas do Envelope Viral/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Testes Imunológicos de Citotoxicidade , Modelos Animais de Doenças , Vacinas contra Ebola/administração & dosagem , Vacinas contra Ebola/genética , Ebolavirus/genética , Feminino , Vetores Genéticos , Interferon gama/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Análise de Sobrevida , Proteínas do Envelope Viral/genética
12.
Sci Rep ; 4: 5824, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25059478

RESUMO

Containment level 4 (CL4) laboratories studying biosafety level 4 viruses are under strict regulations to conduct nonhuman primate (NHP) studies in compliance of both animal welfare and biosafety requirements. NHPs housed in open-barred cages raise concerns about cross-contamination between animals, and accidental exposure of personnel to infectious materials. To address these concerns, two NHP experiments were performed. One examined the simultaneous infection of 6 groups of NHPs with 6 different viruses (Machupo, Junin, Rift Valley Fever, Crimean-Congo Hemorrhagic Fever, Nipah and Hendra viruses). Washing personnel between handling each NHP group, floor to ceiling biobubble with HEPA filter, and plexiglass between cages were employed for partial primary containment. The second experiment employed no primary containment around open barred cages with Ebola virus infected NHPs 0.3 meters from naïve NHPs. Viral antigen-specific ELISAs, qRT-PCR and TCID50 infectious assays were utilized to determine antibody levels and viral loads. No transmission of virus to neighbouring NHPs was observed suggesting limited containment protocols are sufficient for multi-viral CL4 experiments within one room. The results support the concept that Ebola virus infection is self-contained in NHPs infected intramuscularly, at least in the present experimental conditions, and is not transmitted to naïve NHPs via an airborne route.


Assuntos
Contenção de Riscos Biológicos/normas , Febres Hemorrágicas Virais/transmissão , Laboratórios/normas , Filtros de Ar/virologia , Animais , Antígenos Virais/análise , Arenavirus/fisiologia , Bunyaviridae/fisiologia , Ebolavirus/fisiologia , Ensaio de Imunoadsorção Enzimática , Contaminação de Equipamentos , Febres Hemorrágicas Virais/virologia , Henipavirus/fisiologia , Microbolhas/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Risco , Carga Viral , Replicação Viral
13.
Vaccine ; 32(43): 5722-9, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25173474

RESUMO

Ebola virus (EBOV) infections cause lethal hemorrhagic fever in humans, resulting in up to 90% mortality. EBOV outbreaks are sporadic and unpredictable in nature; therefore, a vaccine that is able to provide durable immunity is needed to protect those who are at risk of exposure to the virus. This study assesses the long-term efficacy of the vesicular stomatitis virus (VSV)-based vaccine (VSVΔG/EBOVGP) in two rodent models of EBOV infection. Mice and guinea pigs were first immunized with 2×10(4) or 2×10(5) plaque forming units (PFU) of VSVΔG/EBOVGP, respectively. Challenge of mice with a lethal dose of mouse-adapted EBOV (MA-EBOV) at 6.5 and 9 months after vaccination provided complete protection, and 80% (12 of 15 survivors) protection at 12 months after vaccination. Challenge of guinea pigs with a lethal dose of guinea pig-adapted EBOV (GA-EBOV) at 7, 12 and 18 months after vaccination resulted in 83% (5 of 6 survivors) at 7 months after vaccination, and 100% survival at 12 and 18 months after vaccination. No weight loss or clinical signs were observed in the surviving animals. Antibody responses were analyzed using sera from individual rodents. Levels of EBOV glycoprotein-specific IgG antibody measured immediately before challenge appeared to correlate with protection. These studies confirm that vaccination with VSVΔG/EBOVGP is able to confer long-term protection against Ebola infection in mice and guinea pigs, and support follow-up studies in non-human primates.


Assuntos
Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vesiculovirus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos , Ebolavirus , Feminino , Cobaias , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C
14.
Sci Rep ; 3: 3365, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24284388

RESUMO

Ebola virus (EBOV) is one of the most lethal filoviruses, with mortality rates of up to 90% in humans. Previously, we demonstrated 100% and 50% survival of EBOV-infected cynomologus macaques with a combination of 3 EBOV-GP-specific monoclonal antibodies (ZMAb) administered at 24 or 48 hours post-exposure, respectively. The survivors demonstrated EBOV-GP-specific humoral and cell-mediated immune responses. In order to evaluate whether the immune response induced in NHPs during the ZMAb treatment and EBOV challenge is sufficient to protect survivors against a subsequent exposure, animals that survived the initial challenge were rechallenged at 10 or 13 weeks after the initial challenge. The animals rechallenged at 10 weeks all survived whereas 4 of 6 animals survived a rechallenge at 13 weeks. The data indicate that a robust immune response was generated during the successful treatment of EBOV-infected NHPs with EBOV, which resulted in sustained protection against a second lethal exposure.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Feminino , Doença pelo Vírus Ebola/virologia , Imunidade Celular/imunologia , Memória Imunológica/imunologia , Macaca fascicularis , Masculino
15.
Sci Transl Med ; 5(207): 207ra143, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24132638

RESUMO

ZMAb is a promising treatment against Ebola virus (EBOV) disease that has been shown to protect 50% (two of four) of nonhuman primates (NHPs) when administered 2 days post-infection (dpi). To extend the treatment window and improve protection, we combined ZMAb with adenovirus-vectored interferon-α (Ad-IFN) and evaluated efficacy in EBOV-infected NHPs. Seventy-five percent (three of four) and 100% (four of four) of cynomolgus and rhesus macaques survived, respectively, when treatment was initiated after detection of viremia at 3 dpi. Fifty percent (two of four) of the cynomolgus macaques survived when Ad-IFN was given at 1 dpi, followed by ZMAb starting at 4 dpi, after positive diagnosis. The treatment was able to suppress viremia reaching ~10(5) TCID50 (median tissue culture infectious dose) per milliliter, leading to survival and robust specific immune responses. This study describes conditions capable of saving 100% of EBOV-infected NHPs when initiated after the presence of detectable viremia along with symptoms.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/imunologia , Interferon-alfa/uso terapêutico , Macaca/virologia , Viremia/tratamento farmacológico , Adenoviridae/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Formação de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Vetores Genéticos/metabolismo , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Interferon-alfa/administração & dosagem , Macaca/imunologia , Análise de Sobrevida , Linfócitos T/imunologia , Proteínas Virais/metabolismo , Viremia/imunologia
16.
PLoS Negl Trop Dis ; 6(3): e1575, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448295

RESUMO

Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3-4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 µg) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3-4 MAbs completely protected the majority of animals, while administration at 2-3 dpi achieved 50-100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Cobaias , Doença pelo Vírus Ebola/terapia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Resultado do Tratamento
17.
Sci Transl Med ; 4(158): 158ra146, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115355

RESUMO

Ebola virus causes severe hemorrhagic fever in susceptible hosts. Currently, no licensed vaccines or treatments are available; however, several experimental vaccines have been successful in protecting rodents and nonhuman primates (NHPs) from the lethal Zaire ebolavirus (ZEBOV) infection. The objective of this study was to evaluate immune responses correlating with survival in these animals after lethal challenge with ZEBOV. Knockout mice with impaired ability to generate normal T and/or B cell responses were vaccinated and challenged with ZEBOV. Vaccine-induced protection in mice was mainly mediated by B cells and CD4(+) T cells. Vaccinated, outbred guinea pigs and NHPs demonstrated the highest correlation between survival and levels of total immunoglobulin G (IgG) specific to the ZEBOV glycoprotein (ZGP). These results highlight the relevance of total ZGP-specific IgG levels as a meaningful correlate of protection against ZEBOV exposure.


Assuntos
Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/imunologia , Primatas/imunologia , Primatas/virologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Cobaias , Camundongos
18.
Sci Transl Med ; 4(138): 138ra81, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22700957

RESUMO

Ebola virus (EBOV) is considered one of the most aggressive infectious agents and is capable of causing death in humans and nonhuman primates (NHPs) within days of exposure. Recent strategies have succeeded in preventing acquisition of infection in NHPs after treatment; however, these strategies are only successful when administered before or minutes after infection. The present work shows that a combination of three neutralizing monoclonal antibodies (mAbs) directed against the Ebola envelope glycoprotein (GP) resulted in complete survival (four of four cynomolgus macaques) with no apparent side effects when three doses were administered 3 days apart beginning at 24 hours after a lethal challenge with EBOV. The same treatment initiated 48 hours after lethal challenge with EBOV resulted in two of four cynomolgus macaques fully recovering. The survivors demonstrated an EBOV-GP-specific humoral and cell-mediated immune response. These data highlight the important role of antibodies to control EBOV replication in vivo, and support the use of mAbs against a severe filovirus infection.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/tratamento farmacológico , Macaca/virologia , Animais , Ebolavirus/efeitos dos fármacos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos
20.
PLoS One ; 4(5): e5547, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19440245

RESUMO

BACKGROUND: Zaire ebolavirus (ZEBOV) produces a lethal viral hemorrhagic fever in humans and non-human primates. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that the VSVDeltaG/ZEBOVGP vaccine given 28 days pre-challenge either intranasally (IN), orally (OR), or intramuscularly (IM) protects non-human primates against a lethal systemic challenge of ZEBOV, and induces cellular and humoral immune responses. We demonstrated that ZEBOVGP-specific T-cell and humoral responses induced in the IN and OR groups, following an immunization and challenge, produced the most IFN-gamma and IL-2 secreting cells, and long term memory responses. CONCLUSIONS/SIGNIFICANCE: We have shown conclusively that mucosal immunization can protect from systemic ZEBOV challenge and that mucosal delivery, particularly IN immunization, seems to be more potent than IM injection in the immune parameters we have tested. Mucosal immunization would be a huge benefit in any emergency mass vaccination campaign during a natural outbreak, or following intentional release, or for mucosal immunization of great apes in the wild.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Imunidade nas Mucosas/imunologia , Macaca/imunologia , Macaca/virologia , Animais , Formação de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Doença pelo Vírus Ebola/prevenção & controle , Imunidade Celular/imunologia , Interferon gama/metabolismo , Interleucina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA