Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Med Virol ; 95(1): e28036, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35906185

RESUMO

Monkeypox virus (MPXV) has generally circulated in West and Central Africa since its emergence. Recently, sporadic MPXV infections in several nonendemic countries have attracted widespread attention. Here, we conducted a systematic analysis of the recent outbreak of MPXV-2022, including its genomic annotation and molecular evolution. The phylogenetic analysis indicated that the MPXV-2022 strains belong to the same lineage of the MPXV strain isolated in 2018. However, compared with the MPXV strain in 2018, in total 46 new consensus mutations were observed in the MPXV-2022 strains, including 24 nonsynonymous mutations. By assigning mutations to 187 proteins encoded by the MPXV genome, we found that 10 proteins in the MPXV are more prone to mutation, including D2L-like, OPG023, OPG047, OPG071, OPG105, OPG109, A27L-like, OPG153, OPG188, and OPG210 proteins. In the MPXV-2022 strains, four and three nucleotide substitutions are observed in OPG105 and OPG210, respectively. Overall, our studies illustrated the genome evolution of the ongoing MPXV outbreak and pointed out novel mutations as a reference for further studies.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Genômica , Evolução Molecular
2.
J Med Virol ; 95(2): e28451, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36594413

RESUMO

Zika virus (ZIKV) is a mosquito-borne RNA virus that belongs to the Flaviviridae family. While flavivirus replication is known to occur in the cytoplasm, a significant portion of the viral capsid protein localizes to the nucleus during infection. However, the role of the nuclear capsid is less clear. Herein, we demonstrated SERTA domain containing 3 (SERTAD3) as an antiviral interferon stimulatory gene product had an antiviral ability to ZIKV but not JEV. Mechanistically, we found that SERTAD3 interacted with the capsid protein of ZIKV in the nucleolus and reduced capsid protein abundance through proteasomal degradation. Furthermore, an eight amino acid peptide of SERTAD3 was identified as the minimum motif that binds with ZIKV capsid protein. Remarkably, the eight amino acids synthetic peptide from SERTAD3 significantly prevented ZIKV infection in culture and pregnant mouse models. Taken together, these findings not only reveal the function of SERTAD3 in promoting proteasomal degradation of a specific viral protein but also provide a promising host-targeted therapeutic strategy against ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez , Antivirais/uso terapêutico , Proteínas do Capsídeo/metabolismo , Replicação Viral , Zika virus/genética
3.
J Med Virol ; 94(10): 4830-4838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35705528

RESUMO

Among numerous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concerns, Omicron is more infectious and immune-escaping, while Delta is more pathogenic. Here, we provide evidence for both intervariant and intravariant recombination of the rapidly evolving new SARS-CoV-2 genomes, including XD/XE/XF and BA.3, raising concerns of potential more infectious, immune-escaping, and disease-causing Omicron and Delta-Omicron variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Recombinação Genética , SARS-CoV-2/genética
4.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511375

RESUMO

In spite of several decades of research focused on understanding the biology of human herpes simplex virus 1 (HSV-1), no tool has been developed to study its genome in a high-throughput fashion. Here, we describe the creation of a transposon insertion mutant library of the HSV-1 genome. Using this tool, we aimed to identify novel viral regulators of type I interferon (IFN-I). HSV-1 evades the host immune system by encoding viral proteins that inhibit the type I interferon response. Applying differential selective pressure, we identified the three strongest viral IFN-I regulators in HSV-1. We report that the viral polymerase processivity factor UL42 interacts with the host transcription factor IFN regulatory factor 3 (IRF-3), inhibiting its phosphorylation and downstream beta interferon (IFN-ß) gene transcription. This study represents a proof of concept for the use of high-throughput screening of the HSV-1 genome in investigating viral biology and offers new targets both for antiviral therapy and for oncolytic vector design.IMPORTANCE This work is the first to report the use of a high-throughput mutagenesis method to study the genome of HSV-1. We report three novel viral proteins potentially involved in regulating the host type I interferon response. We describe a novel mechanism by which the viral protein UL42 is able to suppress the production of beta interferon. The tool we introduce in this study can be used to study the HSV-1 genome in great detail to better understand viral gene functions.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Herpesvirus Humano 1/genética , Interferon Tipo I/metabolismo , Mutagênese , Proteínas Virais/metabolismo , Células A549 , Antivirais/farmacologia , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Células HEK293 , Herpesvirus Humano 1/fisiologia , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Receptor de Interferon alfa e beta/genética , Proteínas Virais/genética
5.
Malar J ; 19(1): 280, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758231

RESUMO

BACKGROUND: Maternal malarial infection leads to poor perinatal outcomes, including low birth weight from preterm delivery and/or fetal growth restriction, particularly in primigravidas. In placental malaria, Plasmodium falciparum-infected red blood cells cause an inflammatory response that can interfere with maternal-fetal exchange, leading to poor growth. The type I interferon (IFN-I) pathway plays an immunomodulatory role in viral and bacterial infections, usually by suppressing inflammatory responses. However, its role in placental malaria is unknown. This study examines the cytokine responses in placental tissue from subsets of malaria-infected and uninfected women, and attempts to correlate them with particular birth outcomes. METHODS: 40 whole placental biopsy samples were obtained from pregnant women at least 16 years of age recruited to a larger prospective chemoprevention trial against malaria. These were patients at Tororo District Hospital in Uganda, an area of high malaria endemicity where approximately 40% of women have evidence of malaria infection at delivery. They were regularly followed at a local clinic and monitored for fever, with blood smears performed then and at time of delivery to diagnose malaria infection. Placenta biopsies were taken for histological diagnosis of placental malaria, as well as quantitative PCR analysis of genes in the IFN-I pathway (IFN-ß, IL-10 and MX-1). Parameters such as infant birth weight and gestational age were also recorded. RESULTS: Histological analysis revealed placental malaria in 18 samples, while 22 were found to be uninfected. RT-PCR analysis showed a four-fold increase in IFN-ß and IL-10 expression in multigravidas with placental malaria when compared to gravidity-matched, uninfected controls. This effect was not observed in primigravidas. Interestingly, linear regression analysis showed a positive association between IFN-ß levels and higher birth weights (ß = 101.2 g per log2-fold increase in IFN-ß expression, p = 0.042). This association was strongest in primigravidas with placental malaria (ß = 339.0, p = 0.006). CONCLUSIONS: These results demonstrate differential regulation of the IFN-I pathway in placental malaria according to gravidity, with the greatest anti-inflammatory response seen in multigravidas. The association between IFN-ß levels and higher birth weight also suggests a protective role for IFN-I against fetal growth restriction in placental malaria.


Assuntos
Peso ao Nascer/fisiologia , Número de Gestações , Interferons/metabolismo , Malária/metabolismo , Placenta/parasitologia , Complicações Parasitárias na Gravidez/metabolismo , Adolescente , Adulto , Feminino , Humanos , Malária/parasitologia , Malária/fisiopatologia , Gravidez , Complicações Parasitárias na Gravidez/parasitologia , Complicações Parasitárias na Gravidez/fisiopatologia , Uganda , Adulto Jovem
6.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527024

RESUMO

Azithromycin (AZM) is a widely used antibiotic, with additional antiviral and anti-inflammatory properties that remain poorly understood. Although Zika virus (ZIKV) poses a significant threat to global health, there are currently no vaccines or effective therapeutics against it. Herein, we report that AZM effectively suppresses ZIKV infection in vitro by targeting a late stage in the viral life cycle. Besides that, AZM upregulates the expression of host type I and III interferons and several of their downstream interferon-stimulated genes (ISGs) in response to ZIKV infection. In particular, we found that AZM upregulates the expression of MDA5 and RIG-I, pathogen recognition receptors (PRRs) induced by ZIKV infection, and increases the levels of phosphorylated TBK1 and IRF3. Interestingly, AZM treatment upregulates phosphorylation of TBK1, without inducing phosphorylation of IRF3 by itself. These findings highlight the potential use of AZM as a broad antiviral agent to combat viral infection and prevent ZIKV associated devastating clinical outcomes, such as congenital microcephaly.

7.
Cell Biosci ; 14(1): 23, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368366

RESUMO

BACKGROUND: Viral infection elicits the type I interferon (IFN-I) response in host cells and subsequently inhibits viral infection through inducing hundreds of IFN-stimulated genes (ISGs) that counteract many steps in the virus life cycle. However, most of ISGs have unclear functions and mechanisms in viral infection. Thus, more work is required to elucidate the role and mechanisms of individual ISGs against different types of viruses. RESULTS: Herein, we demonstrate that poliovirus receptor-like protein4 (PVRL4) is an ISG strongly induced by IFN-I stimulation and various viral infections. Overexpression of PVRL4 protein broadly restricts growth of enveloped RNA and DNA viruses, including vesicular stomatitis virus (VSV), herpes simplex virus 1 (HSV-1), influenza A virus (IAV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whereas deletion of PVRL4 in host cells increases viral infections. Mechanistically, it suppresses viral entry by blocking viral-cellular membrane fusion through inhibiting endosomal acidification. The vivo studies demonstrate that Pvrl4-deficient mice were more susceptible to the infection of VSV and IAV. CONCLUSION: Overall, our studies not only identify PVRL4 as an intrinsic broad-spectrum antiviral ISG, but also provide a candidate host-directed target for antiviral therapy against various viruses including SARS-CoV-2 and its variants in the future.

8.
J Med Chem ; 66(17): 12237-12248, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37595260

RESUMO

There is an urgent need for improved therapy to better control the ongoing COVID-19 pandemic. The main protease Mpro plays a pivotal role in SARS-CoV-2 replications, thereby representing an attractive target for antiviral development. We seek to identify novel electrophilic warheads for efficient, covalent inhibition of Mpro. By comparing the efficacy of a panel of warheads installed on a common scaffold against Mpro, we discovered that the terminal alkyne could covalently modify Mpro as a latent warhead. Our biochemical and X-ray structural analyses revealed the irreversible formation of the vinyl-sulfide linkage between the alkyne and the catalytic cysteine of Mpro. Clickable probes based on the alkyne inhibitors were developed to measure target engagement, drug residence time, and off-target effects. The best alkyne-containing inhibitors potently inhibited SARS-CoV-2 infection in cell infection models. Our findings highlight great potentials of alkyne as a latent warhead to target cystine proteases in viruses and beyond.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Alcinos/farmacologia
9.
EBioMedicine ; 87: 104401, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508877

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic, contains a unique, four amino acid (aa) "PRRA" insertion in the spike (S) protein that creates a transmembrane protease serine 2 (TMPRSS2)/furin cleavage site and enhances viral infectivity. More research into immunogenic epitopes and protective antibodies against this SARS-CoV-2 furin cleavage site is needed. METHODS: Combining computational and experimental methods, we identified and characterized an immunogenic epitope overlapping the furin cleavage site that detects antibodies in COVID-19 patients and elicits strong antibody responses in immunized mice. We also identified a high-affinity monoclonal antibody from COVID-19 patient peripheral blood mononuclear cells; the antibody directly binds the furin cleavage site and protects against SARS-CoV-2 infection in a mouse model. FINDINGS: The presence of "PRRA" amino acids in the S protein of SARS-CoV-2 not only creates a furin cleavage site but also generates an immunogenic epitope that elicits an antibody response in COVID-19 patients. An antibody against this epitope protected against SARS-CoV-2 infection in mice. INTERPRETATION: The immunogenic epitope and protective antibody we have identified may augment our strategy in handling COVID-19 epidemic. FUNDING: The National Natural Science Foundation of China (82102371, 91542201, 81925025, 82073181, and 81802870), the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-1-047 and 2022-I2M-2-004), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2020-PT310-006, 2019XK310002, and 2018TX31001), the National Key Research and Development Project of China (2020YFC0841700), US National Institute of Health (NIH) funds grant AI158154, University of California Los Angeles (UCLA) AI and Charity Treks, and UCLA DGSOM BSCRC COVID-19 Award Program. H.Y. is supported by Natural Science Foundation of Jiangsu Province (BK20211554 andBE2022728).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/metabolismo , Furina/química , Furina/metabolismo , Formação de Anticorpos , Epitopos , Leucócitos Mononucleares/metabolismo , Anticorpos
10.
Cell Mol Immunol ; 19(8): 872-882, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732914

RESUMO

Most deaths from the COVID-19 pandemic are due to acute respiratory distress syndrome (ARDS)-related respiratory failure. Cytokine storms and oxidative stress are the major players in ARDS development during respiratory virus infections. However, it is still unknown how oxidative stress is regulated by viral and host factors in response to SARS-CoV-2 infection. Here, we found that activation of NRF2/HMOX1 significantly suppressed SARS-CoV-2 replication in multiple cell types by producing the metabolite biliverdin, whereas SARS-CoV-2 impaired the NRF2/HMOX1 axis through the action of the nonstructural viral protein NSP14. Mechanistically, NSP14 interacts with the catalytic domain of the NAD-dependent deacetylase Sirtuin 1 (SIRT1) and inhibits its ability to activate the NRF2/HMOX1 pathway. Furthermore, both genetic and pharmaceutical evidence corroborated the novel antiviral activity of SIRT1 against SARS-CoV-2. Therefore, our findings reveal a novel mechanism by which SARS-CoV-2 dysregulates the host antioxidant defense system and emphasize the vital role played by the SIRT1/NRF2 axis in host defense against SARS-CoV-2.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Antivirais/farmacologia , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Heme Oxigenase-1 , Humanos , Fator 2 Relacionado a NF-E2 , Pandemias , SARS-CoV-2 , Sirtuína 1 , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
11.
Pathogens ; 11(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35631059

RESUMO

Compared to what we knew at the start of the SARS-CoV-2 global pandemic, our understanding of the interplay between the interferon signaling pathway and SARS-CoV-2 infection has dramatically increased. Innate antiviral strategies range from the direct inhibition of viral components to reprograming the host's own metabolic pathways to block viral infection. SARS-CoV-2 has also evolved to exploit diverse tactics to overcome immune barriers and successfully infect host cells. Herein, we review the current knowledge of the innate immune signaling pathways triggered by SARS-CoV-2 with a focus on the type I interferon response, as well as the mechanisms by which SARS-CoV-2 impairs those defenses.

12.
Cell Biosci ; 12(1): 63, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581593

RESUMO

BACKGROUND: Neutralizing antibodies are approved drugs to treat coronavirus disease-2019 (COVID-19) patients, yet mutations in severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants may reduce the antibody neutralizing activity. New monoclonal antibodies (mAbs) and antibody remolding strategies are recalled in the battle with COVID-19 epidemic. RESULTS: We identified multiple mAbs from antibody phage display library made from COVID-19 patients and further characterized the R3P1-E4 clone, which effectively suppressed SARS-CoV-2 infection and rescued the lethal phenotype in mice infected with SARS-CoV-2. Crystal structural analysis not only explained why R3P1-E4 had selectively reduced binding and neutralizing activity to SARS-CoV-2 variants carrying K417 mutations, but also allowed us to engineer mutant antibodies with improved neutralizing activity against these variants. Thus, we screened out R3P1-E4 mAb which inhibits SARS-CoV-2 and related mutations in vitro and in vivo. Antibody engineering improved neutralizing activity of R3P1-E4 against K417 mutations. CONCLUSION: Our studies have outlined a strategy to identify and engineer neutralizing antibodies against SARS-CoV-2 variants.

13.
Acta Pharm Sin B ; 12(4): 1624-1635, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251918

RESUMO

SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.

14.
Cell Biosci ; 12(1): 139, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042495

RESUMO

BACKGROUND: Recognition of viral invasion by innate antiviral immune system triggers activation of the type I interferon (IFN-I) and proinflammatory signaling pathways. Subsequently, IFN-I induction regulates expression of a group of genes known as IFN-I-stimulated genes (ISGs) to block viral infection. The tripartite motif containing 22 (TRIM22) is an ISG with strong antiviral functions. RESULTS: Here we have shown that the TRIM22 has been strongly upregulated both transcriptionally and translationally upon Zika virus (ZIKV) infection. ZIKV infection is associated with a wide range of clinical manifestations in human from mild to severe symptoms including abnormal fetal brain development. We found that the antiviral function of TRIM22 plays a crucial role in counterattacking ZIKV infection. Overexpression of TRIM22 protein inhibited ZIKV growth whereas deletion of TRIM22 in host cells increased ZIKV infectivity. Mechanistically, TRIM22, as a functional E3 ubiquitin ligase, promoted the ubiquitination and degradation of ZIKV nonstructural protein 1 (NS1) and nonstructural protein 3 (NS3). Further studies showed that the SPRY domain and Ring domain of TRIM22 played important roles in protein interaction and degradation, respectively. In addition, we found that TRIM22 also inhibited other flaviviruses infection including dengue virus (DENV) and yellow fever virus (YFV). CONCLUSION: Thus, TRIM22 is an ISG with important role in host defense against flaviviruses through binding and degradation of the NS1 and NS3 proteins.

15.
bioRxiv ; 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32511312

RESUMO

Background: The 2019 novel coronavirus (2019-nCoV or SARS-CoV-2) has spread more rapidly than any other betacoronavirus including SARS-CoV and MERS-CoV. However, the mechanisms responsible for infection and molecular evolution of this virus remained unclear. Methods: We collected and analyzed 120 genomic sequences of 2019-nCoV including 11 novel genomes from patients in China. Through comprehensive analysis of the available genome sequences of 2019-nCoV strains, we have tracked multiple inheritable SNPs and determined the evolution of 2019-nCoV relative to other coronaviruses. Results: Systematic analysis of 120 genomic sequences of 2019-nCoV revealed co-circulation of two genetic subgroups with distinct SNPs markers, which can be used to trace the 2019-nCoV spreading pathways to different regions and countries. Although 2019-nCoV, human and bat SARS-CoV share high homologous in overall genome structures, they evolved into two distinct groups with different receptor entry specificities through potential recombination in the receptor binding regions. In addition, 2019-nCoV has a unique four amino acid insertion between S1 and S2 domains of the spike protein, which created a potential furin or TMPRSS2 cleavage site. Conclusions: Our studies provided comprehensive insights into the evolution and spread of the 2019-nCoV. Our results provided evidence suggesting that 2019-nCoV may increase its infectivity through the receptor binding domain recombination and a cleavage site insertion. One Sentence Summary: Novel 2019-nCoV sequences revealed the evolution and specificity of betacoronavirus with possible mechanisms of enhanced infectivity.

16.
Nat Commun ; 11(1): 3510, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665616

RESUMO

We report Zika virus (ZIKV) vertical transmission in 130 infants born to PCR+ mothers at the time of the Rio de Janeiro epidemic of 2015-2016. Serum and urine collected from birth through the first year of life were tested by quantitative reverse transcriptase polymerase chain reaction (PCR) and/or IgM Zika MAC-ELISA. Four hundred and seven specimens are evaluated; 161 sera tested by PCR and IgM assays, 85 urines by PCR. Sixty-five percent of children (N = 84) are positive in at least one assay. Of 94 children tested within 3 months of age, 70% are positive. Positivity declines to 33% after 3 months. Five children are PCR+ beyond 200 days of life. Concordance between IgM and PCR results is 52%, sensitivity 65%, specificity 40% (positive PCR results as gold standard). IgM and serum PCR are 61% concordant; serum and urine PCR 55%. Most children (65%) are clinically normal. Equal numbers of children with abnormal findings (29 of 45, 64%) and normal findings (55 of 85, 65%) have positive results, p = 0.98. Earlier maternal trimester of infection is associated with positive results (p = 0.04) but not clinical disease (p = 0.98). ZIKV vertical transmission is frequent but laboratory confirmed infection is not necessarily associated with infant abnormalities.


Assuntos
Doenças Transmissíveis/transmissão , Doenças Transmissíveis/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Feminino , Humanos , Imunoglobulina M/metabolismo , Reação em Cadeia da Polimerase , Gravidez , Viroses/virologia
17.
Nat Commun ; 9(1): 2770, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018345

RESUMO

Detection of viral genomes by the innate immune system elicits an antiviral gene program mediated by type I interferons (IFNs). While viral RNA and DNA species induce IFN via separate pathways, the mechanisms by which these pathways are differentially modulated are unknown. Here we show that the positive regulator of IFN in the RNA pathway, TRAF3, has an inhibitory function in the DNA pathway. Loss of TRAF3 coincides with increased expression of the alternative NF-κB-inducing molecule, NIK, which interacts with the DNA pathway adaptor, STING, to enhance IFN induction. Cells lacking NIK display defective IFN activation in the DNA pathway due to impaired STING signaling, and NIK-deficient mice are more susceptible to DNA virus infection. Mechanistically, NIK operates independently from alternative NF-κB signaling components and instead requires autophosphorylation and oligomerization to activate STING. Thus a previously undescribed pathway for NIK exists in activating IFN in the DNA pathway.


Assuntos
DNA Viral/genética , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Proteínas Serina-Treonina Quinases/genética , RNA Viral/genética , Fator 3 Associado a Receptor de TNF/genética , Vírus da Estomatite Vesicular Indiana/genética , Células A549 , Animais , DNA Viral/imunologia , Feminino , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/imunologia , Células HEK293 , Herpesvirus Humano 1/imunologia , Humanos , Imunidade Inata , Interferon-alfa/genética , Interferon-alfa/imunologia , Interferon beta/genética , Interferon beta/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Proteínas Serina-Treonina Quinases/imunologia , RNA Viral/imunologia , Transdução de Sinais , Células THP-1 , Fator 3 Associado a Receptor de TNF/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Quinase Induzida por NF-kappaB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA