Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Proteomics ; 21(1): 49, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969985

RESUMO

Understanding the interplay of the proteome and the metabolome helps to understand cellular regulation and response. To enable robust inferences from such multi-omics analyses, we introduced and evaluated a workflow for combined proteome and metabolome analysis starting from a single sample. Specifically, we integrated established and individually optimized protocols for metabolomic and proteomic profiling (EtOH/MTBE and autoSP3, respectively) into a unified workflow (termed MTBE-SP3), and took advantage of the fact that the protein residue of the metabolomic sample can be used as a direct input for proteome analysis. We particularly evaluated the performance of proteome analysis in MTBE-SP3, and demonstrated equivalence of proteome profiles irrespective of prior metabolite extraction. In addition, MTBE-SP3 combines the advantages of EtOH/MTBE and autoSP3 for semi-automated metabolite extraction and fully automated proteome sample preparation, respectively, thus advancing standardization and scalability for large-scale studies. We showed that MTBE-SP3 can be applied to various biological matrices (FFPE tissue, fresh-frozen tissue, plasma, serum and cells) to enable implementation in a variety of clinical settings. To demonstrate applicability, we applied MTBE-SP3 and autoSP3 to a lung adenocarcinoma cohort showing consistent proteomic alterations between tumour and non-tumour adjacent tissue independent of the method used. Integration with metabolomic data obtained from the same samples revealed mitochondrial dysfunction in tumour tissue through deregulation of OGDH, SDH family enzymes and PKM. In summary, MTBE-SP3 enables the facile and reliable parallel measurement of proteins and metabolites obtained from the same sample, benefiting from reduced sample variation and input amount. This workflow is particularly applicable for studies with limited sample availability and offers the potential to enhance the integration of metabolomic and proteomic datasets.

2.
Anal Chem ; 91(21): 13900-13906, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31483624

RESUMO

Cervical cancer is the fourth most common cancer in women worldwide, and early detection of its precancerous lesions can decrease mortality. Cytopathology, HPV testing, and histopathology are the most commonly used tools in clinical practice. However, these methods suffer from many limitations such as subjectivity, cost, and time. Therefore, there is an unmet clinical need to develop new noninvasive methods for the early detection of cervical cancer. Here, a novel noninvasive, fast, and label-free approach with high accuracy is presented using liquid-based cytology Pap smears. CARS and SHG/TPF imaging was performed at one wavenumber on the Pap smears from patients with specimens negative for intraepithelial lesions or malignancy (NILM), and low-grade (LSIL) and high-grade (HSIL) squamous intraepithelial lesions. The normal, LSIL, and HSIL cells were selected on the basis of the ratio of the nucleus to the cytoplasm and cell morphology. Raman spectral imaging of single cells from the same smears was also performed to provide integral biochemical information of cells. Deep convolutional neural networks (DCNNs) were trained independently with CARS, SHG/TPF, and Raman images, taking into account both morphotextural and spectral information. DCNNs based on CARS, SHG/TPF, or Raman images have discriminated between normal and cancerous Pap smears with 100% accuracy. These results demonstrate that CARS/SHG/TPF microscopy has a prospective use as a label-free imaging technique for the fast screening of a large number of cells in cytopathological samples.


Assuntos
Detecção Precoce de Câncer/métodos , Análise Espectral Raman/métodos , Neoplasias do Colo do Útero/diagnóstico , Adulto , Aprendizado Profundo , Diagnóstico por Imagem/métodos , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Célula Única/métodos , Neoplasias do Colo do Útero/patologia
3.
Angew Chem Int Ed Engl ; 57(24): 7250-7254, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29645336

RESUMO

Tyrosine kinase receptors are one of the main targets in cancer therapy. They play an essential role in the modulation of growth factor signaling and thereby inducing cell proliferation and growth. Tyrosine kinase inhibitors such as neratinib bind to EGFR and HER2 receptors and exhibit antitumor activity. However, little is known about their detailed cellular uptake and metabolism. Here, we report for the first time the intracellular spatial distribution and metabolism of neratinib in different cancer cells using label-free Raman imaging. Two new neratinib metabolites were detected and fluorescence imaging of the same cells indicate that neratinib accumulates in lysosomes. The results also suggest that both EGFR and HER2 follow the classical endosome lysosomal pathway for degradation. A combination of Raman microscopy, DFT calculations, and LC-MS was used to identify the chemical structure of neratinib metabolites. These results show the potential of Raman microscopy to study drug pharmacokinetics.


Assuntos
Lisossomos/metabolismo , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Quinolinas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Receptor ErbB-2/metabolismo , Análise Espectral Raman
4.
Sci Rep ; 8(1): 15278, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30323297

RESUMO

Monitoring the drug efficacy or resistance in vitro is usually carried out by measuring the response of single few proteins. However, observation of single proteins instead of an integral cell response may lead to results that are not consistent with patient's response to a drug. We present a Raman spectroscopic method that detects the integral cell response to drugs such as tyrosine kinase inhibitors (TKIs). Non-small cell lung cancer (NSCLC) patients with EGFR mutations develop acquired resistance to first (erlotinib)- and third (osimertinib)-generation TKIs. Large erlotinib-induced differences were detected by Raman micro-spectroscopy in NSCLC cells without T790M EGFR mutation but not in cells with this mutation. Additionally, Raman difference spectra detected the response of NSCLC cells with T790M EGFR mutation to second- (neratinib) and third-generation (osimertinib) TKIs, and the resistance of cells with T790M/C797S EGFR mutation to osimertinib. Thus, the in vitro Raman results indicated that NSCLC cells with T790M and T790M/C797S EGFR mutations are resistant to erlotinib- and osimertinib, respectively, consistent with the observed responses of patients. This study shows the potential of Raman micro-spectroscopy to monitor drug resistance and opens a new door to in vitro companion diagnostics for screening personalized therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Monitoramento de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Análise Espectral Raman , Substituição de Aminoácidos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Terapia de Alvo Molecular , Medicina de Precisão , Análise Espectral Raman/métodos , Resultado do Tratamento , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA