Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
CrystEngComm ; 23(35): 6180-6190, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34588923

RESUMO

In this work we use high-resolution synchrotron X-ray diffraction for electron density mapping, in conjunction with ab initio modelling, to study short O-H⋯O and O+-H⋯O- hydrogen bonds whose behaviour is known to be tuneable by temperature. The short hydrogen bonds have donor-acceptor distances in the region of 2.45 Šand are formed in substituted urea and organic acid molecular complexes of N,N'-dimethylurea oxalic acid 2 : 1 (1), N,N-dimethylurea 2,4-dinitrobenzoate 1 : 1 (2) and N,N-dimethylurea 3,5-dinitrobenzoic acid 2 : 2 (3). From the combined analyses, these complexes are found to fall within the salt-cocrystal continuum and exhibit short hydrogen bonds that can be characterised as both strong and electrostatic (1, 3) or very strong with a significant covalent contribution (2). An additional charge assisted component is found to be important in distinguishing the relatively uncommon O-H⋯O pseudo-covalent interaction from a typical strong hydrogen bond. The electron density is found to be sensitive to the extent of static proton transfer, presenting it as a useful parameter in the study of the salt-cocrystal continuum. From complementary calculated hydrogen atom potentials, we attribute changes in proton position to the molecular environment. Calculated potentials also show zero barrier to proton migration, forming an 'energy slide' between the donor and acceptor atoms. The better fundamental understanding of the short hydrogen bond in the 'zone of fluctuation' presented in a salt-cocrystal continuum, enabled by studies like this, provide greater insight into their related properties and can have implications in the regulation of pharmaceutical materials.

2.
Nat Mater ; 18(7): 740-745, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31086318

RESUMO

The synthesis of conventional porous crystals involves building a framework using reversible chemical bond formation, which can result in hydrolytic instability. In contrast, porous molecular crystals assemble using only weak intermolecular interactions, which generally do not provide the same environmental stability. Here, we report that the simple co-crystallization of a phthalocyanine derivative and a fullerene (C60 or C70) forms porous molecular crystals with environmental stability towards high temperature and hot aqueous base or acid. Moreover, by using diamond anvil cells and synchrotron single-crystal measurements, stability towards extreme pressure (>4 GPa) is demonstrated, with the stabilizing fullerene held between two phthalocyanines and the hold tightening at high pressure. Access to open metal centres within the porous molecular co-crystal is demonstrated by in situ crystallographic analysis of the chemisorption of pyridine, oxygen and carbon monoxide. This suggests strategies for the formation of highly stable and potentially functional porous materials using only weak van der Waals intermolecular interactions.

3.
Inorg Chem ; 59(9): 6376-6381, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32297741

RESUMO

Single crystal X-ray diffraction has been used to study the CO2 absorption sites in a microporous Cu-MOF, [CuI2(py-pzpypz)2(µ-CN)2]n (1) (where py-pzpypz = 4-(4-pyridyl)-2,5-dipyrazyl-pyridine), which features zigzag-shaped channels, at a range of CO2 pressures (1, 5, and 10 bar) and at two temperatures (240 and 298 K). Unlike the acetonitrile molecules in the as-synthesized MOF, 1·MeCN, the CO2 molecules in 1·nCO2 (n = 0.8, 0.7, 0.45) are preferentially centered on the vertices of each zig and zag, which allows for weak (azine) C-H···OCO interactions with the H atoms on the electron-deficient pyrazine and pyridine rings of the MOF.

4.
Phys Chem Chem Phys ; 22(12): 6677-6689, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32159533

RESUMO

Bis(1,2-dionedioximato) complexes of Pt(ii) are known for their propensity to form linear chains of metal complexes in the solid state, and under the application of pressure members of the family display interesting optical and conductive properties. Two examples, Pt(bqd)2 and Pt(dmg)2, are known to undergo insulator-to-metal-to-insulator transitions, with the metallic state reached at 0.8-1.4 GPa and 5 GPa, respectively. Previous interpretations of these materials' behaviour focused on the role of the filled dz2 and vacant p orbitals on platinum, with little consideration to the role of the ligand. Here, the pressure-structural behaviour of Pt(bqd)2 is investigated through single crystal X-ray diffraction, the first such study on this material. The difference in conductive behaviour under pressure between Pt(bqd)2 and Pt(dmg)2 is then interpreted through a combination of experimental and computational methods, including conductivity measurements under high pressure and electronic structure calculations. Our computational work reveals the significant contribution from ligand low-lying vacant π-orbitals to the frontier orbitals and bands in these complexes, and provides an explanation for the experimentally observed re-entrant insulator-to-metal-to-insulator transitions, and the differences in behaviour between the two compounds.

5.
Phys Chem Chem Phys ; 22(31): 17668-17676, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32725010

RESUMO

Despite possessing the desirable crystal packing and short PtPt stacking distances required for a large piezoresistive response, the conductivity-pressure response of the Magnus green salt [Pt(NH3)4][PtCl4] is extremely sluggish. Through a combination of high-pressure X-ray diffraction and hybrid-DFT solid state calculations this study demonstrates that the poor conductivity-pressure response is due to a low volumetric compression anisotropy, a relatively large ambient pressure band gap and a lack of dispersion in the conduction band. Ligand modification (from NH3 to NH2CH3) does not enhance the piezoresistive response, causing even lower anisotropy of the volumetric compression and an unexpected phase transition at above 2 GPa. This study demonstrates that consideration of frontier band dispersion is a key design criterion, alongside crystal packing and PtPt stacking distances, for piezoresistive materials.

6.
Angew Chem Int Ed Engl ; 58(29): 9881-9885, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30958918

RESUMO

By using X-ray crystallography, we show that the complexes Λ/Δ-[Ru(TAP)2 (11-CN-dppz)]2+ (TAP=1,4,5,8-tetraazaphenanthrene, dppz=dipyridophenazine) bind DNA G-quadruplex in an enantiospecific manner that parallels the specificity of these complexes with duplex DNA. The Λ complex crystallises with the normally parallel stranded d(TAGGGTTA) tetraplex to give the first such antiparallel strand assembly in which syn-guanosine is adjacent to the complex at the 5' end of the quadruplex core. SRCD measurements confirm that the same conformational switch occurs in solution. The Δ enantiomer, by contrast, is present in the structure but stacked at the ends of the assembly. In addition, we report the structure of Λ-[Ru(phen)2 (11-CN-dppz)]2+ bound to d(TCGGCGCCGA), a duplex-forming sequence, and use both structural models to provide insight into the motif-specific luminescence response of the isostructural phen analogue enantiomers.

7.
J Am Chem Soc ; 140(11): 3952-3958, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29394049

RESUMO

High-pressure single-crystal X-ray structural analyses of isostructural MFM-133(M) (M = Zr, Hf) of flu topology and incorporating the tetracarboxylate ligand TCHB4- [H4TCHB = 3,3',5,5'-tetrakis(4-carboxyphenyl)-2,2',4,4',6,6'-hexamethyl-1,1'-biphenyl] and {M6(µ3-OH)8(OH)8(COO)8} clusters confirm negative linear compressibility (NLC) behavior along the c axis. This occurs via a three-dimensional wine-rack NLC mechanism leading to distortion of the octahedral cage toward a more elongated polyhedron under static compression. Despite the isomorphous nature of these two structures, MFM-133(Hf) shows a higher degree of NLC than the Zr(IV) analogue. Thus, for the first time, we demonstrate here that the NLC property can be effectively tuned in a framework material by simply varying the inorganic component of the frameworks without changing the network topology and structure.

8.
J Am Chem Soc ; 140(1): 382-387, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29226672

RESUMO

Many zeolitic imidazolate frameworks (ZIFs) are promising candidates for use in separation technologies. Comprising large cavities interconnected by small windows they can be used, at least in principle, as molecular sieves where molecules smaller than the window size are able to diffuse into the material while larger molecules are rejected. However, "swing effect" or "gate opening" phenomena resulting in an enlargement of the windows have proven to be detrimental. Here, we present the first systematic experimental and computational study of the effect of chemical functionalization of the imidazole linker on the framework dynamics. Using high-pressure (HP) single-crystal X-ray diffraction, density functional theory, and grand canonical Monte Carlo simulations, we show that in the isostructural ZIF-8, ZIF-90, and ZIF-65 functional groups of increasing polarity (-CH3, -CHO, and -NO2) on the imidazole linkers provide control over the degree of rotation and thus the critical window diameter. On application of pressure, the substituted imidazolate rings rotate, resulting in an increase in both pore volume and content. Our results show that the interplay between the guest molecules and the chemical function of the imidazole linker is essential for directing the swing effect in ZIF frameworks and therefore the adsorption performance.

9.
Phys Chem Chem Phys ; 19(13): 9086-9091, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28304411

RESUMO

A very exceptional effect of pressure-induced dissolution has been revealed for an edible metal-organic framework, γ-CD-MOF-1, formed using γ-cyclodextrin and KOH base. In addition, a new polymorph of γ-CD-MOF-1 has been obtained. The trigonal structure is a symmetry sub-group modification of the cubic form. The pressure-induced dissolution of γ-CD-MOF-1 and its polymorphism are shown to be closely related and regulated by adsorption in the pores, as well as the guest framework interactions.


Assuntos
Estruturas Metalorgânicas , gama-Ciclodextrinas/química , Adsorção , Pressão
10.
Phys Chem Chem Phys ; 19(5): 3544-3549, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093591

RESUMO

By decoupling the mechanical behaviour of building units for the first time in a wine-rack framework containing two different strut types, we show that lithium l-tartrate exhibits NLC with a maximum value, Kmax = -21 TPa-1, and an overall NLC capacity, χNLC = 5.1%, that are comparable to the most exceptional materials to date. Furthermore, the contributions from molecular strut compression and angle opening interplay to give rise to so-called "hidden" negative linear compressibility, in which NLC is absent at ambient pressure, switched on at 2 GPa and sustained up to the limit of our experiment, 5.5 GPa. Analysis of the changes in crystal structure using variable-pressure synchrotron X-ray diffraction reveals new chemical and geometrical design rules to assist the discovery of other materials with exciting hidden anomalous mechanical properties.

11.
Inorg Chem ; 55(3): 1076-88, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26757137

RESUMO

Metal-organic frameworks (MOFs) are usually synthesized using a single type of metal ion, and MOFs containing mixtures of different metal ions are of great interest and represent a methodology to enhance and tune materials properties. We report the synthesis of [Ga2(OH)2(L)] (H4L = biphenyl-3,3',5,5'-tetracarboxylic acid), designated as MFM-300(Ga2), (MFM = Manchester Framework Material replacing NOTT designation), by solvothermal reaction of Ga(NO3)3 and H4L in a mixture of DMF, THF, and water containing HCl for 3 days. MFM-300(Ga2) crystallizes in the tetragonal space group I4122, a = b = 15.0174(7) Å and c = 11.9111(11) Å and is isostructural with the Al(III) analogue MFM-300(Al2) with pores decorated with -OH groups bridging Ga(III) centers. The isostructural Fe-doped material [Ga(1.87)Fe(0.13)(OH)2(L)], MFM-300(Ga(1.87)Fe(0.13)), can be prepared under similar conditions to MFM-300(Ga2) via reaction of a homogeneous mixture of Fe(NO3)3 and Ga(NO3)3 with biphenyl-3,3',5,5'-tetracarboxylic acid. An Fe(III)-based material [Fe3O(1.5)(OH)(HL)(L)(0.5)(H2O)(3.5)], MFM-310(Fe), was synthesized with Fe(NO3)3 and the same ligand via hydrothermal methods. [MFM-310(Fe)] crystallizes in the orthorhombic space group Pmn21 with a = 10.560(4) Å, b = 19.451(8) Å, and c = 11.773(5) Å and incorporates µ3-oxo-centered trinuclear iron cluster nodes connected by ligands to give a 3D nonporous framework that has a different structure to the MFM-300 series. Thus, Fe-doping can be used to monitor the effects of the heteroatom center within a parent Ga(III) framework without the requirement of synthesizing the isostructural Fe(III) analogue [Fe2(OH)2(L)], MFM-300(Fe2), which we have thus far been unable to prepare. Fe-doping of MFM-300(Ga2) affords positive effects on gas adsorption capacities, particularly for CO2 adsorption, whereby MFM-300(Ga(1.87)Fe(0.13)) shows a 49% enhancement of CO2 adsorption capacity in comparison to the homometallic parent material. We thus report herein the highest CO2 uptake (2.86 mmol g(-1) at 273 K at 1 bar) for a Ga-based MOF. The single-crystal X-ray structures of MFM-300(Ga2)-solv, MFM-300(Ga2), MFM-300(Ga2)·2.35CO2, MFM-300(Ga(1.87)Fe(0.13))-solv, MFM-300(Ga(1.87)Fe(0.13)), and MFM-300(Ga(1.87)Fe(0.13))·2.0CO2 have been determined. Most notably, in situ single-crystal diffraction studies of gas-loaded materials have revealed that Fe-doping has a significant impact on the molecular details for CO2 binding in the pore, with the bridging M-OH hydroxyl groups being preferred binding sites for CO2 within these framework materials. In situ synchrotron IR spectroscopic measurements on CO2 binding with respect to the -OH groups in the pore are consistent with the above structural analyses. In addition, we found that, compared to MFM-300(Ga2), Fe-doped MFM-300(Ga(1.87)Fe(0.13)) shows improved catalytic properties for the ring-opening reaction of styrene oxide, but similar activity for the room-temperature acetylation of benzaldehyde by methanol. The role of Fe-doping in these systems is discussed as a mechanism for enhancing porosity and the structural integrity of the parent material.

12.
Angew Chem Int Ed Engl ; 55(7): 2401-5, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26797762

RESUMO

Whilst many metal-organic frameworks possess the chemical stability needed to be used as functional materials, they often lack the physical strength required for industrial applications. Herein, we have investigated the mechanical properties of two UiO-topology Zr-MOFs, the planar UiO-67 ([Zr6O4(OH)4 (bpdc)6], bpdc: 4,4'-biphenyl dicarboxylate) and UiO-abdc ([Zr6O4(OH)4 (abdc)6], abdc: 4,4'-azobenzene dicarboxylate) by single-crystal nanoindentation, high-pressure X-ray diffraction, density functional theory calculations, and first-principles molecular dynamics. On increasing pressure, both UiO-67 and UiO-abdc were found to be incompressible when filled with methanol molecules within a diamond anvil cell. Stabilization in both cases is attributed to dynamical linker disorder. The diazo-linker of UiO-abdc possesses local site disorder, which, in conjunction with its longer nature, also decreases the capacity of the framework to compress and stabilizes it against direct compression, compared to UiO-67, characterized by a large elastic modulus. The use of non-linear linkers in the synthesis of UiO-MOFs therefore creates MOFs that have more rigid mechanical properties over a larger pressure range.

13.
Philos Trans A Math Phys Eng Sci ; 373(2036)2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25624515

RESUMO

Large-scale central facilities such as Diamond Light Source fulfil an increasingly pivotal role in many large-scale scientific research programmes. We illustrate these developments by reference to energy-centred projects at the University of Nottingham, the progress of which depends crucially on access to these facilities. Continuing access to beamtime has now become a major priority for those who direct such programmes.

14.
Chemistry ; 20(11): 3128-34, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24519880

RESUMO

At temperatures below 150 K, the photoactivated metastable endo-nitrito linkage isomer [Ni(Et4 dien)(η(2)-O,ON)(η(1)-ONO)] (Et4 dien=N,N,N',N'-tetraethyldiethylenetriamine) can be generated with 100 % conversion from the ground state nitro-(η(1)-NO2) isomer on irradiation with 500 nm light, in the single crystal by steady-state photocrystallographic techniques. Kinetic studies show the system is no longer metastable above 150 K, decaying back to the ground state nitro-(η(1)-NO2) arrangement over several hours at 150 K. Variable-temperature kinetic measurements in the range of 150-160 K show that the rate of endo-nitrito decay is highly dependent on temperature, and an activation energy of Eact =+48.6(4) kJ mol(-1) is calculated for the decay process. Pseudo-steady-state experiments, where the crystal is continually pumped by the light source for the duration of the X-ray experiment, show the production of a previously unobserved, exo-nitrito-(η(1)-ONO) linkage isomer only at temperatures close to the metastable limit (ca. 140-190 K). This exo isomer is considered to be a transient excited-state species, as it is only observed in data collected by pseudo-steady-state methods.

15.
IUCrJ ; 11(Pt 4): 438-439, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958012

RESUMO

From its conception, X-ray crystallography has provided a unique understanding of the structure, bonding and electronic state of materials, which, in turn, unlocks a means of examining the properties and function of crystalline systems. Using state-of-the-art single-crystal X-ray diffraction, along with UV-Vis spectroscopy and DFT calculations, Zwolenik et al. [(2024). IUCrJ, 11, 519-527] have provided a comprehensive study of the structure-optical property relationship of 1,3-diacetylpyrene with methodologies that are increasingly accessible to non-specialist laboratories.

16.
Chem Commun (Camb) ; 60(24): 3271-3274, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38420859

RESUMO

Extended framework materials with specific topologies can exhibit unusual mechanical behaviour, such as expanding in one direction under hydrostatic (uniform) pressure, known as negative linear compressibility (NLC). Here, two hybrid perovskite frameworks with winerack structures, a known NLC topology, are investigated under pressure. [C(NH2)3]Er(HCO2)2(C2O4) exhibits NLC from ambient pressure to 2.63(10) GPa and is the first reported NLC hybrid perovskite from ambient pressure. However, isostructural [(CH3)2NH2]Er(HCO2)2(C2O4) instead compresses relatively moderately along all axes before it undergoes a phase transition above 0.37(10) GPa. The differences in the mechanical properties can be interpreted from differences in host-guest interactions within these frameworks, primarily their hydrogen bond networks.

17.
J Synchrotron Radiat ; 20(Pt 1): 200-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23254676

RESUMO

Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).

18.
Nat Mater ; 11(8): 710-6, 2012 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-22660661

RESUMO

The selective capture of carbon dioxide in porous materials has potential for the storage and purification of fuel and flue gases. However, adsorption capacities under dynamic conditions are often insufficient for practical applications, and strategies to enhance CO(2)-host selectivity are required. The unique partially interpenetrated metal-organic framework NOTT-202 represents a new class of dynamic material that undergoes pronounced framework phase transition on desolvation. We report temperature-dependent adsorption/desorption hysteresis in desolvated NOTT-202a that responds selectively to CO(2). The CO(2) isotherm shows three steps in the adsorption profile at 195 K, and stepwise filling of pores generated within the observed partially interpenetrated structure has been modelled by grand canonical Monte Carlo simulations. Adsorption of N(2), CH(4), O(2), Ar and H(2) exhibits reversible isotherms without hysteresis under the same conditions, and this allows capture of gases at high pressure, but selectively leaves CO(2) trapped in the nanopores at low pressure.

19.
Inorg Chem ; 52(6): 3326-33, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23432439

RESUMO

(EDT-TTF-CONH2)6[Re6Se8(CN)6] is a molecular solid with R3 space group symmetry and has the remarkable feature of exhibiting hybrid donor layers with a kagome topology which sustain metallic conductivity. We report a detailed study of the structural evolution of the system as a function of temperature and pressure. This rhombohedral phase is maintained on cooling down to 220 K or up to 0.7 GPa pressure, beyond which a symmetry-breaking transition to a triclinic P1 phase drives a metal to insulator transition. Band structures calculated from the structural data lead to a clear description of the effects of temperature and pressure on the structural and electronic properties of this system. Linear energy dispersion is calculated at the zero-gap Fermi level where valence and conduction bands touch for the rhombohedral phase. (EDT-TTF-CONH2)6[Re6Se8(CN)6] thus exhibits a regular (right circular) Dirac-cone like that of graphene at the Fermi level, which has not been reported previously in a molecular solid. The Dirac-cone is robust over the stability region of the rhombohedral phase, and may result in exotic electronic transport and optical properties.

20.
Chem Sci ; 14(28): 7716-7724, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37476711

RESUMO

Postsynthetic modification of metal-organic frameworks (MOFs) has proven to be a hugely powerful tool to tune physical properties and introduce functionality, by exploiting reactive sites on both the MOF linkers and their inorganic secondary building units (SBUs), and so has facilitated a wide range of applications. Studies into the reactivity of MOF SBUs have focussed solely on removal of neutral coordinating solvents, or direct exchange of linkers such as carboxylates, despite the prevalence of ancillary charge-balancing oxide and hydroxide ligands found in many SBUs. Herein, we show that the µ2-OH ligands in the MIL-53 topology Sc MOF, GUF-1, are labile, and can be substituted for µ2-OCH3 units through reaction with pore-bound methanol molecules in a very rare example of pressure-induced postsynthetic modification. Using comprehensive solid-state NMR spectroscopic analysis, we show an order of magnitude increase in this cluster anion substitution process after exposing bulk samples suspended in methanol to a pressure of 0.8 GPa in a large volume press. Additionally, single crystals compressed in diamond anvil cells with methanol as the pressure-transmitting medium have enabled full structural characterisation of the process across a range of pressures, leading to a quantitative single-crystal to single-crystal conversion at 4.98 GPa. This unexpected SBU reactivity - in this case chemisorption of methanol - has implications across a range of MOF chemistry, from activation of small molecules for heterogeneous catalysis to chemical stability, and we expect cluster anion substitution to be developed into a highly convenient novel method for modifying the internal pore surface and chemistry of a range of porous materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA