Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 33(4): 355-373, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37944084

RESUMO

GRID1 and GRID2 encode the enigmatic GluD1 and GluD2 proteins, which form tetrameric receptors that play important roles in synapse organization and development of the central nervous system. Variation in these genes has been implicated in neurodevelopmental phenotypes. We evaluated GRID1 and GRID2 human variants from the literature, ClinVar, and clinical laboratories and found that many of these variants reside in intolerant domains, including the amino terminal domain of both GRID1 and GRID2. Other conserved regions, such as the M3 transmembrane domain, show different intolerance between GRID1 and GRID2. We introduced these variants into GluD1 and GluD2 cDNA and performed electrophysiological and biochemical assays to investigate the mechanisms of dysfunction of GRID1/2 variants. One variant in the GRID1 distal amino terminal domain resides at a position predicted to interact with Cbln2/Cbln4, and the variant disrupts complex formation between GluD1 and Cbln2, which could perturb its role in synapse organization. We also discovered that, like the lurcher mutation (GluD2-A654T), other rare variants in the GRID2 M3 domain create constitutively active receptors that share similar pathogenic phenotypes. We also found that the SCHEMA schizophrenia M3 variant GluD1-A650T produced constitutively active receptors. We tested a variety of compounds for their ability to inhibit constitutive currents of GluD receptor variants and found that pentamidine potently inhibited GluD2-T649A constitutive channels (IC50 50 nM). These results identify regions of intolerance to variation in the GRID genes, illustrate the functional consequences of GRID1 and GRID2 variants, and suggest how these receptors function normally and in disease.


Assuntos
Sistema Nervoso Central , Receptores de Glutamato , Humanos , Sistema Nervoso Central/metabolismo , Mutação , Domínios Proteicos , Receptores de Glutamato/metabolismo
2.
Hum Mol Genet ; 32(19): 2857-2871, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37369021

RESUMO

Advances in sequencing technology have generated a large amount of genetic data from patients with neurological conditions. These data have provided diagnosis of many rare diseases, including a number of pathogenic de novo missense variants in GRIN genes encoding N-methyl-d-aspartate receptors (NMDARs). To understand the ramifications for neurons and brain circuits affected by rare patient variants, functional analysis of the variant receptor is necessary in model systems. For NMDARs, this functional analysis needs to assess multiple properties in order to understand how variants could impact receptor function in neurons. One can then use these data to determine whether the overall actions will increase or decrease NMDAR-mediated charge transfer. Here, we describe an analytical and comprehensive framework by which to categorize GRIN variants as either gain-of-function (GoF) or loss-of-function (LoF) and apply this approach to GRIN2B variants identified in patients and the general population. This framework draws on results from six different assays that assess the impact of the variant on NMDAR sensitivity to agonists and endogenous modulators, trafficking to the plasma membrane, response time course and channel open probability. We propose to integrate data from multiple in vitro assays to arrive at a variant classification, and suggest threshold levels that guide confidence. The data supporting GoF and LoF determination are essential to assessing pathogenicity and patient stratification for clinical trials as personalized pharmacological and genetic agents that can enhance or reduce receptor function are advanced. This approach to functional variant classification can generalize to other disorders associated with missense variants.


Assuntos
Doenças do Sistema Nervoso , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Mutação de Sentido Incorreto/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Modelos Biológicos
3.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538865

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Assuntos
Epilepsia , Receptores de N-Metil-D-Aspartato , Criança , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Epilepsia/genética , Mutação de Sentido Incorreto , Fenótipo
4.
J Pharmacol Exp Ther ; 381(1): 54-66, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35110392

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are tetrameric assemblies of two glutamate N-methyl-D-aspartate receptor subunits, GluN1 and two GluN2, that mediate excitatory synaptic transmission in the central nervous system. Four genes (GRIN2A-D) encode four distinct GluN2 subunits (GluN2A-D). Thus, NMDARs can be diheteromeric assemblies of two GluN1 plus two identical GluN2 subunits, or triheteromeric assemblies of two GluN1 subunits plus two different GluN2 subunits. An increasing number of de novo GRIN variants have been identified in patients with neurologic conditions and with GRIN2A and GRIN2B harboring the vast majority (> 80%) of variants in these cases. These variants produce a wide range of effects on NMDAR function depending upon its subunit subdomain location and additionally on the subunit composition of diheteromeric versus triheteromeric NMDARs. Increasing evidence implicates triheteromeric GluN1/GluN2A/GluN2B receptors as a major component of the NMDAR pool in the adult cortex and hippocampus. Here, we explore the ability of GluN2A- and GluN2B-selective inhibitors to reduce excess current flow through triheteromeric GluN1/GluN2A/GluN2B receptors that contain one copy of GRIN2A or GRIN2B gain-of-function variants. Our data reveal a broad range of sensitivities for variant-containing triheteromeric receptors to subunit-selective inhibitors, with some variants still showing strong sensitivity to inhibitors, whereas others are relatively insensitive. Most variants, however, retain sensitivity to non-selective channel blockers and the competitive antagonist D-(-)-2-amino-5-phosphonopentanoic acid. These results suggest that with comprehensive analysis, certain disease-related GRIN2A and GRIN2B variants can be identified as potential targets for subunit-selective modulation and potential therapeutic gain. SIGNIFICANCE STATEMENT: Triheteromeric NMDA receptors that contain one copy each of the GluN2A and GluN2B subunits show intermediate sensitivity to GluN2A- and GluN2B-selective inhibitors, making these compounds candidates for attenuating overactive, GRIN variant-containing NMDA receptors associated with neurological conditions. We show that functional evaluation of variant properties with inhibitor pharmacology can support selection of a subset of variants for which GluN2 subunit-selective agents remain effective inhibitors of variant-containing triheteromeric NMDA receptors.


Assuntos
Mutação com Ganho de Função , Receptores de N-Metil-D-Aspartato , Hipocampo/metabolismo , Humanos , Transmissão Sináptica
5.
Photosynth Res ; 143(2): 129-141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31641987

RESUMO

A biohybrid model system is described that interfaces synthetic Mn-oxides with bacterial reaction centers to gain knowledge concerning redox reactions by metal clusters in proteins, in particular the Mn4CaO5 cluster of photosystem II. The ability of Mn-oxides to bind to modified bacterial reaction centers and transfer an electron to the light-induced oxidized bacteriochlorophyll dimer, P+, was characterized using optical spectroscopy. The environment of P was altered to obtain a high P/P+ midpoint potential. In addition, different metal-binding sites were introduced by substitution of amino acid residues as well as extension of the C-terminus of the M subunit with the C-terminal region of the D1 subunit of photosystem II. The Mn-compounds MnO2, αMn2O3, Mn3O4, CaMn2O4, and Mn3(PO4)2 were tested and compared to MnCl2. In general, addition of the Mn-compounds resulted in a decrease in the amount of P+ while the reduced quinone was still present, demonstrating that the Mn-compounds can serve as secondary electron donors. The extent of P+ reduction for the Mn-oxides was largest for αMn2O3 and CaMn2O4 and smallest for Mn3O4 and MnO2. The addition of Mn3(PO4)2 resulted in nearly complete P+ reduction, similar to MnCl2. Overall, the activity was correlated with the initial oxidation state of the Mn-compound. Transient optical measurements showed a fast kinetic component, assigned to reduction of P+ by the Mn-oxide, in addition to a slow component due to charge recombination. The results support the conjecture that the incorporation of Mn-oxides by ancient anoxygenic phototrophs was a step in the evolution of oxygenic photosynthesis.


Assuntos
Bacterioclorofilas/metabolismo , Dimerização , Compostos de Manganês/metabolismo , Óxidos/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Transporte de Elétrons , Luz , Modelos Moleculares , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/química , Subunidades Proteicas/química , Análise Espectral
6.
Chemistry ; 26(28): 6240-6246, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32201996

RESUMO

Hybrid protein-organometallic catalysts are being explored for selective catalysis of a number of reactions, because they utilize the complementary strengths of proteins and of organometallic complex. Herein, we present an artificial hydrogenase, StrepH2, built by incorporating a biotinylated [Fe-Fe] hydrogenase organometallic mimic within streptavidin. This strategy takes advantage of the remarkable strength and specificity of biotin-streptavidin recognition, which drives quantitative incorporation of the biotinylated diironhexacarbonyl center into streptavidin, as confirmed by UV/Vis spectroscopy and X-ray crystallography. FTIR spectra of StrepH2 show characteristic peaks at shift values indicative of interactions between the catalyst and the protein scaffold. StrepH2 catalyzes proton reduction to hydrogen in aqueous media during photo- and electrocatalysis. Under photocatalytic conditions, the protein-embedded catalyst shows enhanced efficiency and prolonged activity compared to the isolated catalyst. Transient absorption spectroscopy data suggest a mechanism for the observed increase in activity underpinned by an observed longer lifetime for the catalytic species FeI Fe0 when incorporated within streptavidin compared to the biotinylated catalyst in solution.

7.
Photosynth Res ; 137(3): 361-375, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29802563

RESUMO

We provide a tribute to George Feher, one of the founding scientists in the use of biophysical techniques to probe photosynthetic complexes, especially the bacterial reaction center. His early life is briefly reviewed followed by a description of the impact of his 30 years of photosynthesis research. We describe his pioneering work in bacterial photosynthesis that helped to provide a detailed picture of the molecular events responsible for light energy capture and the subsequent electron and proton transfer events in photosynthetic organisms. These studies had a profound and lasting impact on our understanding of the molecular mechanisms of photosynthesis. We also include some personal comments from his former students and colleagues.


Assuntos
Fotossíntese , Complexo de Proteína do Fotossistema II/história , Oxigênio Singlete/história , California , Tchecoslováquia , Transporte de Elétrons , História do Século XX , História do Século XXI , Israel
8.
Biochemistry ; 56(49): 6460-6469, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29131579

RESUMO

The ability of an artificial four-helix bundle Mn-protein, P1, to bind and transfer an electron to photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides was characterized using optical spectroscopy. Upon illumination of reaction centers, an electron is transferred from P, the bacteriochlorophyll dimer, to QA, the primary electron acceptor. The P1 Mn-protein can bind to the reaction center and reduce the oxidized bacteriochlorophyll dimer, P+, with a dissociation constant of 1.2 µM at pH 9.4, comparable to the binding constant of c-type cytochromes. Amino acid substitutions of surface residues on the Mn-protein resulted in increases in the dissociation constant to 8.3 µM. The extent of reduction of P+ by the P1 Mn-protein was dependent on the P/P+ midpoint potential and the pH. Analysis of the free energy difference yielded a midpoint potential of approximately 635 mV at pH 9.4 for the Mn cofactor of the P1 Mn-protein, a value similar to those found for other Mn cofactors in proteins. The linear dependence of -56 mV/pH is consistent with one proton being released upon Mn oxidation, allowing the complex to maintain overall charge neutrality. These outcomes demonstrate the feasibility of designing four-helix bundles and other artificial metalloproteins to bind and transfer electrons to bacterial reaction centers and establish the usefulness of this system as a platform for designing sites to bind novel metal cofactors capable of performing complex oxidation-reduction reactions.


Assuntos
Proteínas de Bactérias/química , Manganês/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Transporte de Elétrons , Cinética , Manganês/química , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
9.
Biochemistry ; 56(41): 5582-5592, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28520412

RESUMO

An in silico model for the 1:1 ferredoxin (Fd)/nitrate reductase (NR) complex, using the known structure of Synechocystis sp. PCC 6803 Fd and the in silico model of Synechococcus sp. PCC 7942 NR, is used to map the interaction sites that define the interface between Fd and NR. To test the electrostatic interactions predicted by the model complex, five positively charged NR amino acids (Arg43, Arg46, Arg197, Lys201, and Lys614) and a negatively charged amino acid (Glu219) were altered using site-directed mutagenesis and characterized by activity measurements, metal analysis, and electron paramagnetic resonance (EPR) studies. All of the charge replacement variants retained wild-type levels of activity with reduced methyl viologen (MV), but a significant decrease in activity was observed for the R43Q, R46Q, K201Q, and K614Q variants when reduced Fd served as the electron donor. EPR analysis as well as the Fe and Mo analyses showed that loss of activity observed with these variants was not the consequence of perturbation of the Mo center or [4Fe-4S] cluster. Therefore, the loss of the Fd-linked specific activity observed with these variants can be explained only by invoking a role for Arg43, Arg46, Lys201, and Lys614 in Fd binding. The R43Q, R46Q, K201Q, and K614Q NR variants also showed a decreased binding affinity for Fd, compared to that of wild-type NR, supporting a key role of these four positively charged residues in the productive binding of Fd.


Assuntos
Ferredoxinas/metabolismo , Modelos Moleculares , Nitrato Redutase/metabolismo , Synechococcus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Biologia Computacional , Bases de Dados de Proteínas , Espectroscopia de Ressonância de Spin Eletrônica , Sistemas Inteligentes , Ferredoxinas/química , Ferro/análise , Simulação de Acoplamento Molecular , Molibdênio/análise , Mutagênese Sítio-Dirigida , Mutação , Nitrato Redutase/química , Nitrato Redutase/genética , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Synechococcus/enzimologia
10.
Biochim Biophys Acta Bioenerg ; 1858(12): 945-954, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28882760

RESUMO

To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4µM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3µM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.


Assuntos
Manganês/química , Metaloproteínas/química , Oxigênio/química , Conformação Proteica em alfa-Hélice , Sítios de Ligação , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Metaloproteínas/síntese química , Metaloproteínas/metabolismo , Modelos Moleculares , Ligação Proteica
11.
Biochim Biophys Acta ; 1857(5): 539-547, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26392146

RESUMO

A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Proteínas de Bactérias/química , Manganês/metabolismo , Metaloproteínas/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Humanos , Manganês/química , Metaloproteínas/genética , Metaloproteínas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
12.
Hum Mol Genet ; 24(8): 2138-46, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25561692

RESUMO

The spliceosome plays a fundamental role in RNA metabolism by facilitating pre-RNA splicing. To understand how this essential complex is formed, we have used protein crystallography to determine the first complete structures of the key assembler protein, SMN, and the truncated isoform, SMNΔ7, which is found in patients with the disease spinal muscular atrophy (SMA). Comparison of the structures of SMN and SMNΔ7 shows many similar features, including the presence of two Tudor domains, but significant differences are observed in the C-terminal domain, including 12 additional amino acid residues encoded by exon 7 in SMN compared with SMNΔ7. Mapping of missense point mutations found in some SMA patients reveals clustering around three spatial locations, with the largest cluster found in the C-terminal domain. We propose a structural model of SMN binding with the Gemin2 protein and a heptameric Sm ring, revealing a critical assembly role of the residues 260-294, with the differences at the C-terminus of SMNΔ7 compared with SMN likely leading to loss of small nuclear ribonucleoprotein (snRNP) assembly. The SMN complex is proposed to form a dimer driven by formation of a glycine zipper involving α helix formed by amino acid residues 263-294. These results explain how structural changes of SMN give rise to loss of SMN-mediated snRNP assembly and support the hypothesis that this loss results in atrophy of neurons in SMA.


Assuntos
Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/química , Motivos de Aminoácidos , Dimerização , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Atrofia Muscular Espinal/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN/genética , Proteínas do Complexo SMN/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/química , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
13.
J Surg Res ; 206(2): 316-324, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27884325

RESUMO

BACKGROUND: The increasing incidence of healthcare-associated infections (HAIs) and multidrug-resistant organisms demonstrate the need for innovative technological solutions. Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli, and Pseudomonas aeruginosa in particular are common pathogens responsible for a large percentage of indwelling medical device-associated clinical infections. The bactericidal effects of visible light sterilization (VLS) using 405-nm is one potential therapeutic under investigation. MATERIALS AND METHODS: Light-emitting diodes of 405-nm were used to treat varying concentrations of S aureus, S pneumonia, E coli, and P aeruginosa. Irradiance levels between 2.71 ± 0.20 to 9.27 ± 0.36 mW/cm2 and radiant exposure levels up to 132.98 ± 6.68 J/cm2 were assessed. RESULTS: Dose-dependent effects were observed in all species. Statistically significant reductions were seen in both Gram-positive and Gram-negative bacteria. At the highest radiant exposure levels, bacterial log10 reductions were E coli-6.27 ± 0.54, S aureus-6.10 ± 0.60, P aeruginosa-5.20 ± 0.84, and S pneumoniae-6.01 ± 0.59. Statistically significant results (<0.001*) were found at each time point. CONCLUSIONS: We have successfully demonstrated high-efficacy bacterial reduction using 405-nm light sterilization. The VLS showed statistical significance against both Gram-positive and Gram-negative species with the given treatment times. The ß-lactam antibiotic-resistant E coli was the most sensitive to VLS, suggesting light therapy could a suitable option for sterilization in drug-resistant bacterial species. This research illustrates the potential of using VLS in treating clinically relevant bacterial infections.


Assuntos
Infecção Hospitalar/prevenção & controle , Escherichia coli/efeitos da radiação , Luz , Pseudomonas aeruginosa/efeitos da radiação , Staphylococcus aureus/efeitos da radiação , Esterilização/métodos , Streptococcus pneumoniae/efeitos da radiação , Humanos
14.
Biochemistry ; 54(36): 5557-68, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26305228

RESUMO

An in silico model of the ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942, and information about active sites in related enzymes, had identified Cys148, Met149, Met306, Asp163, and Arg351 as amino acids likely to be involved in either nitrate binding, prosthetic group binding, or catalysis. Site-directed mutagenesis was used to alter each of these residues, and differences in enzyme activity and substrate binding of the purified variants were analyzed. In addition, the effects of these replacements on the assembly and properties of the Mo cofactor and [4Fe-4S] centers were investigated using Mo and Fe determinations, coupled with electron paramagnetic resonance spectroscopy. The C148A, M149A, M306A, D163N, and R351Q variants were all inactive with either the physiological electron donor, reduced ferredoxin, or the nonphysiological electron donor, reduced methyl viologen, as the source of electrons, and all exhibited changes in the properties of the Mo cofactor. Charge-conserving D163E and R351K variants were also inactive, suggesting that specific amino acids are required at these two positions. The implications for the role of these five conserved active-site residues in light of these new results and previous structural, spectroscopic, and mutagenesis studies for related periplasmic nitrate reductases are discussed.


Assuntos
Aminoácidos/química , Proteínas de Bactérias/química , Ferredoxinas/química , Nitrato Redutases/química , Synechococcus/enzimologia , Proteínas de Bactérias/genética , Domínio Catalítico , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Modelos Moleculares , Molibdênio/química , Mutagênese Sítio-Dirigida , Nitrato Redutases/genética
16.
Proc Natl Acad Sci U S A ; 109(7): 2314-8, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308385

RESUMO

One of the outstanding questions concerning the early Earth is how ancient phototrophs made the evolutionary transition from anoxygenic to oxygenic photosynthesis, which resulted in a substantial increase in the amount of oxygen in the atmosphere. We have previously demonstrated that reaction centers from anoxygenic photosynthetic bacteria can be modified to bind a redox-active Mn cofactor, thus gaining a key functional feature of photosystem II, which contains the site for water oxidation in cyanobacteria, algae, and plants [Thielges M, et al. (2005) Biochemistry 44:7389-7394]. In this paper, the Mn-binding reaction centers are shown to have a light-driven enzymatic function; namely, the ability to convert superoxide into molecular oxygen. This activity has a relatively high efficiency with a k(cat) of approximately 1 s(-1) that is significantly larger than typically observed for designed enzymes, and a K(m) of 35-40 µM that is comparable to the value of 50 µM for Mn-superoxide dismutase, which catalyzes a similar reaction. Unlike wild-type reaction centers, the highly oxidizing reaction centers are not stable in the light unless they have a bound Mn. The stability and enzymatic ability of this type of Mn-binding reaction centers would have provided primitive phototrophs with an environmental advantage before the evolution of organisms with a more complex Mn(4)Ca cluster needed to perform the multielectron reactions required to oxidize water.


Assuntos
Luz , Manganês/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Superóxidos/metabolismo , Microeletrodos , Oxirredução
17.
Biochemistry ; 53(12): 1958-70, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24593131

RESUMO

The capA gene (FTT0807) from Francisella tularensis subsp. tularensis SCHU S4 encodes a 44.4 kDa integral membrane protein composed of 403 amino acid residues that is part of an apparent operon that encodes at least two other membrane proteins, CapB, and CapC, which together play a critical role in the virulence and pathogenesis of this bacterium. The capA gene was overexpressed in Escherichia coli as a C-terminal His6-tagged fusion with a folding reporter green fluorescent protein (frGFP). Purification procedures using several detergents were developed for the fluorescing and membrane-bound product, yielding approximately 30 mg of pure protein per liter of bacterial culture. Dynamic light scattering indicated that CapA-frGFP was highly monodisperse, with a size that was dependent upon both the concentration and choice of detergent. Circular dichroism showed that CapA-frGFP was stable over the range of 3-9 for the pH, with approximately half of the protein having well-defined α-helical and ß-sheet secondary structure. The addition of either sodium chloride or calcium chloride at concentrations producing ionic strengths above 0.1 M resulted in a small increase of the α-helical content and a corresponding decrease in the random-coil content. Secondary-structure predictions on the basis of the analysis of the sequence indicate that the CapA membrane protein has two transmembrane helices with a substantial hydrophilic domain. The hydrophilic domain is predicted to contain a long disordered region of 50-60 residues, suggesting that the increase of α-helical content at high ionic strength could arise because of electrostatic interactions involving the disordered region. CapA is shown to be an inner-membrane protein and is predicted to play a key cellular role in the assembly of polysaccharides.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/fisiologia , Francisella tularensis/química , Francisella tularensis/fisiologia , Proteínas de Choque Térmico/isolamento & purificação , Proteínas de Choque Térmico/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Fenômenos Biofísicos/fisiologia , Proteínas de Choque Térmico/química , Dados de Sequência Molecular , Valor Preditivo dos Testes
18.
J Am Chem Soc ; 136(29): 10198-201, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24992489

RESUMO

The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm(2) at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm(2) that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron-proton coupled process.


Assuntos
Glicina/química , Luz , Níquel/química , Água/química , Catálise , Eletroquímica , Concentração de Íons de Hidrogênio , Oxirredução , Processos Fotoquímicos
19.
medRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766179

RESUMO

Genetic variants in genes GRIN1 , GRIN2A , GRIN2B , and GRIN2D , which encode subunits of the N-methyl-D-aspartate receptor (NMDAR), have been associated with severe and heterogeneous neurologic diseases. Missense variants in these genes can result in gain or loss of the NMDAR function, requiring opposite therapeutic treatments. Computational methods that predict pathogenicity and molecular functional effects are therefore crucial for accurate diagnosis and therapeutic applications. We assembled missense variants: 201 from patients, 631 from general population, and 159 characterized by electrophysiological readouts showing whether they can enhance or reduce the receptor function. This includes new functional data from 47 variants reported here, for the first time. We found that pathogenic/benign variants and variants that increase/decrease the channel function were distributed unevenly on the protein structure, with spatial proximity to ligands bound to the agonist and antagonist binding sites being key predictive features. Leveraging distances from ligands, we developed two independent machine learning-based predictors for NMDAR missense variants: a pathogenicity predictor which outperforms currently available predictors (AUC=0.945, MCC=0.726), and the first binary predictor of molecular function (increase or decrease) (AUC=0.809, MCC=0.523). Using these, we reclassified variants of uncertain significance in the ClinVar database and refined a previous genome-informed epidemiological model to estimate the birth incidence of molecular mechanism-defined GRIN disorders. Our findings demonstrate that distance from ligands is an important feature in NMDARs that can enhance variant pathogenicity prediction and enable functional prediction. Further studies with larger numbers of phenotypically and functionally characterized variants will enhance the potential clinical utility of this method.

20.
Biochemistry ; 52(25): 4343-53, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23692082

RESUMO

The roles of four conserved basic amino acids in the reaction catalyzed by the ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 have been investigated using site-directed mutagenesis in combination with measurements of steady-state kinetics, substrate-binding affinities, and spectroscopic properties of the enzyme's two prosthetic groups. Replacement of either Lys58 or Arg70 by glutamine leads to a complete loss of activity, both with the physiological electron donor, reduced ferredoxin, and with a nonphysiological electron donor, reduced methyl viologen. More conservative, charge-maintaining K58R and R70K variants were also completely inactive. Replacement of Lys130 by glutamine produced a variant that retained 26% of the wild-type activity with methyl viologen as the electron donor and 22% of the wild-type activity with ferredoxin as the electron donor, while replacement by arginine produces a variant that retains a significantly higher percentage of the wild-type activity with both electron donors. In contrast, replacement of Arg146 by glutamine had minimal effect on the activity of the enzyme. These results, along with substrate-binding and spectroscopic measurements, are discussed in terms of an in silico structural model for the enzyme.


Assuntos
Aminoácidos Básicos/química , Ferredoxinas/química , Nitrato Redutase/química , Synechococcus/enzimologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequência Conservada , Glutamina/química , Glutamina/genética , Dados de Sequência Molecular , Nitrato Redutase/genética , Especificidade por Substrato/genética , Synechococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA