RESUMO
Typhoid fever due to Salmonella Typhi and invasive nontyphoidal Salmonella (iNTS) infections caused by serovars Enteritidis (SE) and Typhimurium (STm) are major pediatric health problems in sub-Saharan Africa. Typhoid has high complication rates, and iNTS infections have high case fatality rates; moreover, emerging antimicrobial resistance is diminishing treatment options. Vi capsule-based typhoid conjugate vaccine (Typbar-TCV™), licensed in India and pre-qualified by the World Health Organization, elicits durable immunity when administered to infants, but no iNTS vaccines are licensed or imminent. We have developed monovalent SE and STm glycoconjugate vaccines based on coupling lipopolysaccharide-derived core-O polysaccharide (COPS) to phase 1 flagellin protein (FliC) from the homologous serovar. Herein, we report the immunogenicity of multivalent formulations of iNTS COPS:FliC conjugates with Typbar-TCV™. Rabbits immunized with the trivalent typhoid-iNTS glycoconjugate vaccine generated high titers of serum IgG antibody to all three polysaccharide antigens for which anti-COPS IgG antibodies were directed primarily against serogroup-specific OPS epitopes. Responses to SE and STm FliC were lower relative to anti-COPS titers. Post-vaccination rabbit sera mediated bactericidal activity in-vitro, and protected mice after passive transfer against challenge with virulent SE or STm Malian blood isolates. These results support accelerated progression to clinical trials.
Assuntos
Anticorpos Antibacterianos/imunologia , Glicoconjugados , Imunogenicidade da Vacina , Salmonella typhi , Febre Tifoide , Vacinas Tíficas-Paratíficas , Animais , Glicoconjugados/química , Glicoconjugados/imunologia , Glicoconjugados/farmacologia , Coelhos , Salmonella typhi/química , Salmonella typhi/imunologia , Febre Tifoide/imunologia , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/química , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Tíficas-Paratíficas/farmacologiaRESUMO
Introduction: Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods: Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results: MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion: These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.
Assuntos
Anticorpos Antibacterianos , Vacinas contra Salmonella , Salmonella typhimurium , Vacinas Atenuadas , Animais , Feminino , Camundongos , Envelhecimento/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Deleção de Genes , Evasão da Resposta Imune , Imunogenicidade da Vacina , Camundongos Endogâmicos C57BL , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/genética , Vacinas contra Salmonella/imunologia , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Vacinas Atenuadas/imunologiaRESUMO
Introduction: Non-typhoidal Salmonella (NTS) is responsible for a high burden of foodborne infections and deaths worldwide. In the United States, NTS infections are the leading cause of hospitalizations and deaths due to foodborne illnesses, and older adults (≥65 years) are disproportionately affected by Salmonella infections. Due to this public health concern, we have developed a live attenuated vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), against Salmonella enterica serovar Typhimurium, a common serovar of NTS. Little is known about the effect of age on oral vaccine responses, and due to the decline in immune function with age, it is critical to evaluate vaccine candidates in older age groups during early product development. Methods: In this study, adult (six-to-eight-week-old) and aged (18-month-old) C57BL/6 mice received two doses of CVD 1926 (109 CFU/dose) or PBS perorally, and animals were evaluated for antibody and cell-mediated immune responses. A separate set of mice were immunized and then pre-treated with streptomycin and challenged orally with 108 CFU of wild-type S. Typhimurium SL1344 at 4 weeks postimmunization. Results: Compared to PBS-immunized mice, adult mice immunized with CVD 1926 had significantly lower S. Typhimurium counts in the spleen, liver, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of vaccinated versus PBS aged mice. Aged mice exhibited reduced Salmonella-specific antibody titers in the serum and feces following immunization with CVD 1926 compared to adult mice. In terms of T cell responses (T-CMI), immunized adult mice showed an increase in the frequency of IFN-γ- and IL-2-producing splenic CD4 T cells, IFN-γ- and TNF-α-producing Peyer's Patch (PP)-derived CD4 T cells, and IFN-γ- and TNF-α-producing splenic CD8 T cells compared to adult mice administered PBS. In contrast, in aged mice, T-CMI responses were similar in vaccinated versus PBS mice. CVD 1926 elicited significantly more PP-derived multifunctional T cells in adult compared to aged mice. Conclusion: These data suggest that our candidate live attenuated S. Typhimurium vaccine, CVD 1926, may not be sufficiently protective or immunogenic in older humans and that mucosal responses to live-attenuated vaccines decrease with increasing age.
Assuntos
Doenças Cardiovasculares , Infecções por Salmonella , Vacinas contra Salmonella , Salmonella enterica , Vacinas Tíficas-Paratíficas , Humanos , Camundongos , Animais , Idoso , Lactente , Vacinas Atenuadas , Sorogrupo , Fator de Necrose Tumoral alfa , Camundongos Endogâmicos C57BL , Infecções por Salmonella/prevenção & controle , Salmonella typhimuriumRESUMO
The World Health Organization estimates ~180,000 deaths occur annually from burn-related injuries. Many victims who survive the initial burn trauma succumb to bacterial infections that lead to sepsis during treatment. Although advancements in burn care continue to improve in high-income countries due to their burn centers and advanced research, low and middle-income countries continue to see high frequencies of burn injuries and burn-related deaths due to secondary infections. Bacterial-derived sepsis is the most life-threatening danger for people that survive burn injuries. Here we provide evidence for the first time that a subeschar seroma forms postburn even in the absence of infection in mice. The seroma fills with a volume estimated at 500 µL of fluid, 25% of the blood supply, free of red blood cells. The seroma fluid supports robust Pseudomonas aeruginosa (PA) growth and contains inflammatory cytokines and chemokines, which recruit immature neutrophils and monocytes to the seroma in the absence of endothelial breakdown. These immune cells fail to contain PA expansion and dissemination. This recruitment of monocytes and immature neutrophils may result in sequestering these critical immune cells away from other tissues during a pivotal time during bacterial dissemination, promoting PA-mediated sepsis.
Assuntos
Queimaduras , Infecções por Pseudomonas , Sepse , Lesões dos Tecidos Moles , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Pseudomonas aeruginosa , Sepse/microbiologia , SeromaRESUMO
Older adults are more susceptible to viral and bacterial infection, and experience higher incidence and severity of infectious diseases. Although vaccination is the most logical solution in preventing infectious diseases, primary vaccine responses in individuals aged ≥65 years-old fail to generate complete protection. This is presumably attributed to immunosenescence, a term that describes functional differences associated with the immune system and natural age advancement. Both the innate and adaptive immune systems experience age-related impairments that contribute to insufficient protection following vaccination. This review addresses current knowledge of age-related changes that affect vaccine responsiveness; including the deficits in innate cell functions, dampened humoral and cell-mediated immune responses, current vaccination schedules for older adults, and concludes with potential strategies for improving vaccine efficacy specifically for this age group. Due to an age-related decline in immunity and poor vaccine responses, infectious diseases remain a burden among the aged population.