Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L330-L343, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38252635

RESUMO

Extremely preterm infants are often exposed to long durations of mechanical ventilation to facilitate gas exchange, resulting in ventilation-induced lung injury (VILI). New lung protective strategies utilizing noninvasive ventilation or low tidal volumes are now common but have not reduced rates of bronchopulmonary dysplasia. We aimed to determine the effect of 24 h of low tidal volume ventilation on the immature lung by ventilating preterm fetal sheep in utero. Preterm fetal sheep at 110 ± 1(SD) days' gestation underwent sterile surgery for instrumentation with a tracheal loop to enable in utero mechanical ventilation (IUV). At 112 ± 1 days' gestation, fetuses received either in utero mechanical ventilation (IUV, n = 10) targeting 3-5 mL/kg for 24 h, or no ventilation (CONT, n = 9). At necropsy, fetal lungs were collected to assess molecular and histological markers of lung inflammation and injury. IUV significantly increased lung mRNA expression of interleukin (IL)-1ß, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) compared with CONT, and increased surfactant protein (SP)-A1, SP-B, and SP-C mRNA expression compared with CONT. IUV produced modest structural changes to the airways, including reduced parenchymal collagen and myofibroblast density. IUV increased pulmonary arteriole thickness compared with CONT but did not alter overall elastin or collagen content within the vasculature. In utero ventilation of an extremely preterm lung, even at low tidal volumes, induces lung inflammation and injury to the airways and vasculature. In utero ventilation may be an important model to isolate the confounding mechanisms of VILI to develop effective therapies for preterm infants requiring prolonged respiratory support.NEW & NOTEWORTHY Preterm infants often require prolonged respiratory support, but the relative contribution of ventilation to the development of lung injury is difficult to isolate. In utero mechanical ventilation allows for mechanistic investigations into ventilation-induced lung injury without confounding factors associated with sustaining extremely preterm lambs ex utero. Twenty-four hours of in utero ventilation, even at low tidal volumes, increased lung inflammation and surfactant protein expression and produced structural changes to the lung parenchyma and vasculature.


Assuntos
Pneumonia , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Recém-Nascido , Ovinos , Animais , Lactente Extremamente Prematuro , Pulmão/metabolismo , Feto/metabolismo , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Colágeno/metabolismo , Pneumonia/patologia , Tensoativos/metabolismo , RNA Mensageiro/metabolismo
2.
Pediatr Res ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519795

RESUMO

The hippocampus is a vital brain structure deep in the medial temporal lobe that mediates a range of functions encompassing emotional regulation, learning, memory, and cognition. Hippocampal development is exquisitely sensitive to perturbations and adverse conditions during pregnancy and at birth, including preterm birth, fetal growth restriction (FGR), acute hypoxic-ischaemic encephalopathy (HIE), and intrauterine inflammation. Disruptions to hippocampal development due to these conditions can have long-lasting functional impacts. Here, we discuss a range of preclinical models of prematurity and FGR and conditions that induce hypoxia and inflammation, which have been critical in elucidating the underlying mechanisms and cellular and subcellular structures implicated in hippocampal dysfunction. Finally, we discuss potential therapeutic targets to reduce the burden of these perinatal insults on the developing hippocampus. IMPACT: The review explores the preclinical literature examining the association between pregnancy and birth complications, and hippocampal form and function. The developmental processes and cellular mechanisms that are disrupted within the hippocampus following perinatal compromise are described, and potential therapeutic targets are discussed.

3.
Pediatr Res ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519794

RESUMO

The hippocampus is a neuron-rich specialised brain structure that plays a central role in the regulation of emotions, learning and memory, cognition, spatial navigation, and motivational processes. In human fetal development, hippocampal neurogenesis is principally complete by mid-gestation, with subsequent maturation comprising dendritogenesis and synaptogenesis in the third trimester of pregnancy and infancy. Dendritogenesis and synaptogenesis underpin connectivity. Hippocampal development is exquisitely sensitive to perturbations during pregnancy and at birth. Clinical investigations demonstrate that preterm birth, fetal growth restriction (FGR), and acute hypoxic-ischaemic encephalopathy (HIE) are common perinatal complications that alter hippocampal development. In turn, deficits in hippocampal development and structure mediate a range of neurodevelopmental disorders, including cognitive and learning problems, autism, and Attention-Deficit/Hyperactivity Disorder (ADHD). In this review, we summarise the developmental profile of the hippocampus during fetal and neonatal life and examine the hippocampal deficits observed following common human pregnancy complications. IMPACT: The review provides a comprehensive summary of the developmental profile of the hippocampus in normal fetal and neonatal life. We address a significant knowledge gap in paediatric research by providing a comprehensive summary of the relationship between pregnancy complications and subsequent hippocampal damage, shedding new light on this critical aspect of early neurodevelopment.

4.
Pediatr Res ; 95(6): 1510-1518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225450

RESUMO

BACKGROUND: Early-onset fetal growth restriction (FGR) is associated with adverse outcomes. We hypothesised that maternal melatonin administration will improve fetal brain structure in FGR. METHODS: Surgery was performed on twin-bearing ewes at 88 days (0.6 gestation), and FGR induced in one twin via single umbilical artery ligation. Melatonin was administered intravenously (6 mg/day) to a group of ewes commencing on day of surgery until 127 days (0.85 gestation), when the ewe/fetuses were euthanized, and fetal brains collected. RESULTS: Study groups were control (n = 5), FGR (n = 5), control+melatonin (control+MLT; n = 6) and FGR+melatonin (FGR + MLT; n = 6). Melatonin administration did not significantly alter fetal body or brain weights. Myelin (CNPase+) fibre density was reduced in FGR vs. control animals in most brain regions examined (p < 0.05) and melatonin treatment restored CNPase fibre density. Similar but less pronounced effect was seen with mature myelin (MBP+) staining. Significant differences in activated microglia (Iba-1) activity were seen between lamb groups (MLT mitigated FGR effect) in periventricular white matter, subventricular zone and external capsule (p < 0.05). Similar effects were seen in astrogliosis (GFAP) in intragyral white matter and cortex. CONCLUSIONS: Maternal melatonin administration in early onset FGR led to improved myelination of white matter brain regions, possibly mediated by decreased inflammation. IMPACT: Maternal melatonin administration might lead to neuroprotection in the growth-restricted fetus, possibly via dampening neuroinflammation and enhancing myelination. This preclinical study adds to the body of work on this topic, and informs clinical translation. Neuroprotection likely to improve long-term outcomes of this vulnerable infant group.


Assuntos
Encéfalo , Retardo do Crescimento Fetal , Melatonina , Fármacos Neuroprotetores , Insuficiência Placentária , Melatonina/administração & dosagem , Melatonina/farmacologia , Animais , Retardo do Crescimento Fetal/prevenção & controle , Retardo do Crescimento Fetal/tratamento farmacológico , Feminino , Gravidez , Fármacos Neuroprotetores/administração & dosagem , Ovinos , Insuficiência Placentária/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo
5.
J Physiol ; 601(21): 4667-4689, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37589339

RESUMO

Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.


Assuntos
Retardo do Crescimento Fetal , Placenta , Recém-Nascido , Gravidez , Feminino , Humanos , Tronco Encefálico , Pulmão , Hipóxia
6.
J Physiol ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641535

RESUMO

Fetal growth restriction (FGR) is associated with cardiovascular and respiratory complications after birth and beyond. Despite research showing a range of neurological changes following FGR, little is known about how FGR affects the brainstem cardiorespiratory control centres. The primary neurons that release serotonin reside in the brainstem cardiorespiratory control centres and may be affected by FGR. At two time points in the last trimester of sheep brain development, 110 and 127 days of gestation (0.74 and 0.86 of gestation), we assessed histopathological alterations in the brainstem cardiorespiratory control centres of the pons and medulla in early-onset FGR versus control fetal sheep. The FGR cohort were hypoxaemic and asymmetrically growth restricted. Compared to the controls, the brainstem of FGR fetuses exhibited signs of neuropathology, including elevated cell death and reduced cell proliferation, grey and white matter deficits, and evidence of oxidative stress and neuroinflammation. FGR brainstem pathology was predominantly observed in the medullary raphé nuclei, hypoglossal nucleus, nucleus ambiguous, solitary tract and nucleus of the solitary tract. The FGR groups showed imbalanced brainstem serotonin and serotonin 1A receptor abundance in the medullary raphé nuclei, despite evidence of increased serotonin staining within vascular regions of placentomes collected from FGR fetuses. Our findings demonstrate both early and adaptive brainstem neuropathology in response to placental insufficiency. KEY POINTS: Early-onset fetal growth restriction (FGR) was induced in fetal sheep, resulting in chronic fetal hypoxaemia. Growth-restricted fetuses exhibit persistent neuropathology in brainstem nuclei, characterised by disrupted cell proliferation and reduced neuronal cell number within critical centres responsible for the regulation of cardiovascular and respiratory functions. Elevated brainstem inflammation and oxidative stress suggest potential mechanisms contributing to the observed neuropathological changes. Both placental and brainstem levels of 5-HT were found to be impaired following FGR.

7.
J Physiol ; 601(16): 3647-3665, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37467062

RESUMO

Chronic fetal hypoxaemia is a common pregnancy complication that increases the risk of infants experiencing respiratory complications at birth. In turn, chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in animal models of hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. However, whether antenatal antioxidant therapy confers any benefit on lung development in complicated pregnancies has not yet been investigated. Here, we tested the hypothesis that maternal antenatal treatment with MitoQ will protect the developing lung in hypoxic pregnancy in sheep, a species with similar fetal lung developmental milestones as humans. Maternal treatment with MitoQ during late gestation promoted fetal pulmonary surfactant maturation and an increase in the expression of lung mitochondrial complexes III and V independent of oxygenation. Maternal treatment with MitoQ in hypoxic pregnancy also increased the expression of genes regulating liquid reabsorption in the fetal lung. These data support the hypothesis tested and suggest that MitoQ as an antenatal targeted antioxidant treatment may improve lung maturation in the late gestation fetus. KEY POINTS: Chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. MitoQ is a targeted antioxidant that uses the cell and the mitochondrial membrane potential to accumulate within the mitochondria. Treatment of healthy or hypoxic pregnancy with MitoQ, increases the expression of key molecules involved in surfactant maturation, lung liquid reabsorption and in mitochondrial proteins driving ATP synthesis in the fetal sheep lung. There were no detrimental effects of MitoQ treatment alone on the molecular components measured in the present study, suggesting that maternal antioxidant treatment has no effect on other components of normal maturation of the surfactant system.


Assuntos
Antioxidantes , Hipóxia , Compostos Organofosforados , Ubiquinona/análogos & derivados , Humanos , Recém-Nascido , Gravidez , Feminino , Animais , Ovinos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Pulmão/fisiologia , Tensoativos/metabolismo , Tensoativos/farmacologia
8.
Am J Physiol Heart Circ Physiol ; 325(1): H89-H105, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204872

RESUMO

Epidemiologists have long documented a higher risk of adult-onset cardiovascular diseases (CVDs) such as stroke, hypertension, and coronary artery disease, as well as mortality from circulatory causes in low birth-weight cohorts (poor in utero substrate supply). Utero-placental insufficiency and in utero hypoxemic state-induced alterations in arterial structure and compliance are important initiating factors for adult-onset hypertension. The mechanistic links between fetal growth restriction and CVD include decreased arterial wall elastin-to-collagen ratio, endothelial dysfunction, and heightened renin-angiotensin-aldosterone system (RAAS). Systemic arterial thickness on fetal ultrasound and vascular changes in placental histopathology in growth restricted cohorts indicate fetal/developmental origins of adult-onset circulatory diseases. Similar findings of impaired arterial compliance have been noticed across age groups (neonates through to adults). Such changes augment what occurs as "normal arterial aging," resulting in accelerated arterial aging. Data from animal models suggest that hypoxemia-associated vascular adaptations enacted in utero are region specific, reflecting long-term vascular pathology. In this review, we explore the influence of birthweight and prematurity on blood pressure and arterial stiffness, demonstrating impaired arterial dynamics in growth-restricted cohorts across age groups, explain how early arterial aging influences adult-onset CVDs, describe pathophysiology data from experimental models and finally, discuss interventions which may influence aging by way of altering various cellular and molecular mechanisms of arterial aging. Age-appropriate interventions which have noted efficacy include prolonged breastfeeding and high polyunsaturated fatty acids dietary intake. Targeting the RAAS seems a promising approach. New data indicate activation of sirtuin 1 and maternal resveratrol may have beneficial effects.


Assuntos
Doenças Cardiovasculares , Hipertensão , Humanos , Animais , Feminino , Gravidez , Doenças Cardiovasculares/etiologia , Placenta , Artérias , Retardo do Crescimento Fetal , Envelhecimento
9.
Am J Physiol Heart Circ Physiol ; 325(5): H1081-H1087, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656131

RESUMO

Growth-restricted neonates have worse outcomes after perinatal asphyxia, with more severe metabolic acidosis than appropriately grown neonates. The cardiovascular physiology associated with fetal growth restriction (FGR) may alter their response to asphyxia. However, research on asphyxia in FGR is limited. Here we compared cardiovascular hemodynamics in preterm FGR and control lambs during mild perinatal asphyxia. We induced FGR in one twin at 89 days gestation (term 148 days), while the other served as a control. At 126 days gestation, lambs were instrumented to allow arterial blood pressure and regional blood flow recording, and then mild perinatal asphyxia was induced by umbilical cord clamping, and resuscitation followed neonatal guidelines. FGR lambs maintained carotid blood flow (CBF) for 7 min, while control lambs rapidly decreased CBF (P < 0.05). Fewer growth-restricted lambs needed chest compressions for return of spontaneous circulation (ROSC) (17 vs. 83%, P = 0.02). The extent of blood pressure overshoot after ROSC was similar, but it took longer for MAP to return to baseline in FGR lambs (18.83 ± 0.00 vs. 47.67 ± 0.00 min, P = 0.003). Growth-restricted lambs had higher CBF after ROSC (P < 0.05) and displayed CBF overshoot, unlike control lambs (P < 0.03). In conclusion, preterm growth-restricted lambs show resilience during perinatal asphyxia based on prolonged CBF maintenance and reduced need for chest compressions during resuscitation. However, CBF overshoot after ROSC may increase the risk of cerebrovascular injury in FGR.NEW & NOTEWORTHY Preterm growth-restricted lambs maintain carotid blood flow for longer than control lambs during asphyxia and have a lower requirement for chest compressions than control lambs during resuscitation. Preterm growth-restricted, but not control, lambs displayed an overshoot in carotid blood flow following return of spontaneous circulation.


Assuntos
Asfixia Neonatal , Asfixia , Gravidez , Feminino , Animais , Ovinos , Asfixia/complicações , Animais Recém-Nascidos , Carneiro Doméstico , Asfixia Neonatal/complicações , Asfixia Neonatal/terapia , Hemodinâmica/fisiologia
10.
Am J Physiol Heart Circ Physiol ; 325(6): H1266-H1278, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773057

RESUMO

Fetal growth restriction (FGR) increases the risk cardiovascular disease (CVD) in adulthood. Placental insufficiency and subsequent chronic fetal hypoxemia are causal factors for FGR, leading to a redistribution of blood flow that prioritizes vital organs. Subclinical signs of cardiovascular dysfunction are evident in growth-restricted neonates; however, the mechanisms programming for CVD in adulthood remain unknown. This study aimed to determine the potential mechanisms underlying structural and functional changes within the heart and essential (carotid) and nonessential (femoral) vascular beds in growth-restricted lambs. Placental insufficiency was surgically induced in ewes at 89 days gestational age (dGA, term = 148dGA). Three age groups were investigated: fetal (126dGA), newborn (24 h after preterm birth), and 4-wk-old lambs. In vivo and histological assessments of cardiovascular indices were undertaken. Resistance femoral artery function was assessed via in vitro wire myography and blockade of key vasoactive pathways including nitric oxide, prostanoids, and endothelium-dependent hyperpolarization. All lambs were normotensive throughout the first 4 wk of life. Overall, the FGR cohort had more globular hearts compared with controls (P = 0.0374). A progressive decline in endothelium-dependent vasodilation was demonstrated in FGR lambs compared with controls. Further investigation revealed that impairment of the prostanoid pathway may drive this reduction in vasodilatory capacity. Clinical indicators of CVD were not observed in our FGR lambs. However, subclinical signs of cardiovascular dysfunction were present in our FGR offspring. This study provides insight into potential mechanisms, such as the prostanoid pathway, that may warrant therapeutic interventions to improve cardiovascular development in growth-restricted newborns.NEW & NOTEWORTHY Our findings provide novel insight into the potential mechanisms that program for cardiovascular dysfunction in growth-restricted neonates as our growth-restricted lambs exhibited a progressive decline in endothelium-dependent vasodilation in the femoral artery between birth and 4 wk of age. Subsequent analyses indicated that this reduction in vasodilatory capacity is likely to be mediated by the prostanoid pathway and prostanoids could be a potential target for therapeutic interventions for fetal growth restriction (FGR).


Assuntos
Doenças Cardiovasculares , Insuficiência Placentária , Nascimento Prematuro , Ovinos , Animais , Gravidez , Feminino , Recém-Nascido , Humanos , Retardo do Crescimento Fetal , Placenta/irrigação sanguínea , Carneiro Doméstico , Prostaglandinas
11.
Ann Neurol ; 92(6): 1066-1079, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054160

RESUMO

OBJECTIVE: Seizures are more common in the neonatal period than at any other stage of life. Phenobarbital is the first-line treatment for neonatal seizures and is at best effective in approximately 50% of babies, but may contribute to neuronal injury. Here, we assessed the efficacy of phenobarbital versus the synthetic neurosteroid, ganaxolone, to moderate seizure activity and neuropathology in neonatal lambs exposed to perinatal asphyxia. METHODS: Asphyxia was induced via umbilical cord occlusion in term lambs at birth. Lambs were treated with ganaxolone (5mg/kg/bolus then 5mg/kg/day for 2 days) or phenobarbital (20mg/kg/bolus then 5mg/kg/day for 2 days) at 6 hours. Abnormal brain activity was classified as stereotypic evolving (SE) seizures, epileptiform discharges (EDs), and epileptiform transients (ETs) using continuous amplitude-integrated electroencephalographic recordings. At 48 hours, lambs were euthanized for brain pathology. RESULTS: Asphyxia caused abnormal brain activity, including SE seizures that peaked at 18 to 20 hours, EDs, and ETs, and induced neuronal degeneration and neuroinflammation. Ganaxolone treatment was associated with an 86.4% reduction in the number of seizures compared to the asphyxia group. The total seizure duration in the asphyxia+ganaxolone group was less than the untreated asphyxia group. There was no difference in the number of SE seizures between the asphyxia and asphyxia+phenobarbital groups or duration of SE seizures. Ganaxolone treatment, but not phenobarbital, reduced neuronal degeneration within hippocampal CA1 and CA3 regions, and cortical neurons, and ganaxolone reduced neuroinflammation within the thalamus. INTERPRETATION: Ganaxolone provided better seizure control than phenobarbital in this perinatal asphyxia model and was neuroprotective for the newborn brain, affording a new therapeutic opportunity for treatment of neonatal seizures. ANN NEUROL 2022;92:1066-1079.


Assuntos
Asfixia Neonatal , Epilepsia , Pregnanolona , Animais , Humanos , Recém-Nascido , Anticonvulsivantes/uso terapêutico , Asfixia Neonatal/complicações , Asfixia Neonatal/tratamento farmacológico , Epilepsia/tratamento farmacológico , Fenobarbital/uso terapêutico , Convulsões/tratamento farmacológico , Ovinos , Animais Recém-Nascidos , Modelos Animais de Doenças
12.
Dev Neurosci ; 44(4-5): 344-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35447627

RESUMO

Antenatal brain development during the final trimester of human pregnancy is a time when mature neurons become increasingly complex in morphology, through axonal and dendritic outgrowth, dendritic branching, and synaptogenesis, together with myelin production. Characterizing neuronal morphological development over time is of interest to developmental neuroscience and provides the framework to measure gray matter pathology in pregnancy compromise. Neuronal microstructure can be assessed with Golgi staining, which selectively stains a small percentage (1-3%) of neurons and their entire dendritic arbor. Advanced imaging processing and analysis tools can then be employed to quantitate neuronal cytoarchitecture. Traditional Golgi-staining protocols have been optimized, and commercial kits are readily available offering improved speed and sensitivity of Golgi staining to produce consistent results. Golgi-stained tissue is then visualized under light microscopy and image analysis may be completed with several software programs for morphological analysis of neurons, including freeware and commercial products. Each program requires optimization, whether semiautomated or automated, requiring different levels of investigator intervention and interpretation, which is a critical consideration for unbiased analysis. Detailed protocols for fetal ovine brain tissue are lacking, and therefore, we provide a step-by-step workflow of computer software analysis for morphometric quantification of Golgi-stained neurons. Here, we utilized the commonly applied FD Rapid GolgiStain kit (FD NeuroTechnologies) on ovine fetal brains collected at 127 days (0.85) of gestational age for the analysis of CA1 pyramidal neurons in the hippocampus. We describe the step-by-step protocol to retrieve neuronal morphometrics using Imaris imaging software to provide quantification of apical and basal dendrites for measures of dendrite length (µm), branch number, branch order, and Sholl analysis (intersections over radius). We also detail software add-ons for data retrieval of dendritic spines including the number of spines, spine density, and spine classification, which are critical indicators of synaptic function. The assessment of neuronal morphology in the developing brain using Rapid-Golgi and Imaris software is labor-intensive, particularly during the optimization period. The methodology described in this step-by-step description is novel, detailed, and aims to provide a reproducible, working protocol to quantify neuronal cytoarchitecture with simple descriptions that will save time for the next users of these commonly used techniques.


Assuntos
Dendritos , Neurônios , Animais , Feminino , Feto , Hipocampo/patologia , Humanos , Neurônios/patologia , Gravidez , Ovinos , Coloração e Rotulagem
13.
PLoS Biol ; 17(1): e2006552, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668572

RESUMO

Evidence derived from human clinical studies and experimental animal models shows a causal relationship between adverse pregnancy and increased cardiovascular disease in the adult offspring. However, translational studies isolating mechanisms to design intervention are lacking. Sheep and humans share similar precocial developmental milestones in cardiovascular anatomy and physiology. We tested the hypothesis in sheep that maternal treatment with antioxidants protects against fetal growth restriction and programmed hypertension in adulthood in gestation complicated by chronic fetal hypoxia, the most common adverse consequence in human pregnancy. Using bespoke isobaric chambers, chronically catheterized sheep carrying singletons underwent normoxia or hypoxia (10% oxygen [O2]) ± vitamin C treatment (maternal 200 mg.kg-1 IV daily) for the last third of gestation. In one cohort, the maternal arterial blood gas status, the value at which 50% of the maternal hemoglobin is saturated with oxygen (P50), nitric oxide (NO) bioavailability, oxidative stress, and antioxidant capacity were determined. In another, naturally delivered offspring were raised under normoxia until early adulthood (9 months). Lambs were chronically instrumented and cardiovascular function tested in vivo. Following euthanasia, femoral arterial segments were isolated and endothelial function determined by wire myography. Hypoxic pregnancy induced fetal growth restriction and fetal oxidative stress. At adulthood, it programmed hypertension by enhancing vasoconstrictor reactivity and impairing NO-independent endothelial function. Maternal vitamin C in hypoxic pregnancy improved transplacental oxygenation and enhanced fetal antioxidant capacity while increasing NO bioavailability, offsetting constrictor hyper-reactivity and replenishing endothelial function in the adult offspring. These discoveries provide novel insight into mechanisms and interventions against fetal growth restriction and adult-onset programmed hypertension in an animal model of complicated pregnancy in a species of similar temporal developmental milestones to humans.


Assuntos
Ácido Ascórbico/farmacologia , Retardo do Crescimento Fetal/fisiopatologia , Hipertensão/prevenção & controle , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/uso terapêutico , Feminino , Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Hipóxia , Óxido Nítrico , Estresse Oxidativo , Gravidez , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ovinos/fisiologia
14.
Pediatr Res ; 91(4): 828-838, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33859366

RESUMO

BACKGROUND: In the fetus, the appropriate balance of prooxidants and antioxidants is essential to negate the detrimental effects of oxidative stress on lung maturation. Antioxidants improve respiratory function in postnatal life and adulthood. However, the outcomes and biological mechanisms of antioxidant action in the fetal lung are unknown. METHODS: We investigated the effect of maternal daily vitamin C treatment (200 mg/kg, intravenously) for a month in late gestation (105-138 days gestation, term ~145 days) on molecular regulation of fetal lung maturation in sheep. Expression of genes and proteins regulating lung development was quantified in fetal lung tissue. The number of surfactant-producing cells was determined by immunohistochemistry. RESULTS: Maternal vitamin C treatment increased fetal lung gene expression of the antioxidant enzyme SOD-1, hypoxia signaling genes (HIF-2α, HIF-3α, ADM, and EGLN-3), genes regulating sodium movement (SCNN1-A, SCNN1-B, ATP1-A1, and ATP1-B1), surfactant maturation (SFTP-B and ABCA3), and airway remodeling (ELN). There was no effect of maternal vitamin C treatment on the expression of protein markers evaluated or on the number of surfactant protein-producing cells in fetal lung tissue. CONCLUSIONS: Maternal vitamin C treatment in the last third of pregnancy in sheep acts at the molecular level to increase the expression of genes that are important for fetal lung maturation in a healthy pregnancy. IMPACT: Maternal daily vitamin C treatment for a month in late gestation in sheep increases the expression of gene-regulating pathways that are essential for normal fetal lung development. Following late gestation vitamin C exposure in a healthy pregnancy, an increase in lung gene but not protein expression may act as a mechanism to aid in the preparation for exposure to the air-breathing environment after birth. In the future, the availability/development of compounds with greater antioxidant properties than vitamin C or more specific targets at the site of oxidative stress in vivo may translate clinically to improve respiratory outcomes in complicated pregnancies at birth.


Assuntos
Antioxidantes , Surfactantes Pulmonares , Adulto , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Feminino , Feto/metabolismo , Humanos , Pulmão , Gravidez , Surfactantes Pulmonares/metabolismo , Ovinos , Tensoativos
15.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299174

RESUMO

Fetal growth restriction (FGR) is a common complication of pregnancy, resulting in a fetus that fails to reach its genetically determined growth potential. Whilst the fetal cardiovascular response to acute hypoxia is well established, the fetal defence to chronic hypoxia is not well understood due to experiment constraints. Growth restriction results primarily from reduced oxygen and nutrient supply to the developing fetus, resulting in chronic hypoxia. The fetus adapts to chronic hypoxia by redistributing cardiac output via brain sparing in an attempt to preserve function in the developing brain. This review highlights the impact of brain sparing on the developing fetal cardiovascular and cerebrovascular systems, as well as emerging long-term effects in offspring that were growth restricted at birth. Here, we explore the pathogenesis associated with brain sparing within the cerebrovascular system. An increased understanding of the mechanistic pathways will be critical to preventing neuropathological outcomes, including motor dysfunction such as cerebral palsy, or behaviour dysfunctions including autism and attention-deficit/hyperactivity disorder (ADHD).


Assuntos
Doenças Cardiovasculares/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Retardo do Crescimento Fetal/patologia , Hipóxia/fisiopatologia , Débito Cardíaco , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/terapia , Humanos , Recém-Nascido , Gravidez
16.
J Physiol ; 598(19): 4405-4419, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32754905

RESUMO

KEY POINTS: Fetal growth restriction induces a haemodynamic response that aims to maintain blood flow to vital organs such as the brain, in the face of chronic hypoxaemia Maternal sildenafil treatment impairs the hypoxaemia-driven haemodynamic response and potentially compromises fetal development. ABSTRACT: Inadequate substrate delivery to a fetus results in hypoxaemia and fetal growth restriction (FGR). In response, fetal cardiovascular adaptations redirect cardiac output to essential organs to maintain oxygen delivery and sustain development. However, FGR infants remain at risk for cardiovascular and neurological sequelae. Sildenafil citrate (SC) has been examined as a clinical therapy for FGR, but also crosses the placenta and may exert direct effects on the fetus. We investigated the effects of maternal SC administration on maternal and fetal cardiovascular physiology in growth-restricted fetal sheep. Fetal sheep (0.7 gestation) underwent sterile surgery to induce growth restriction by single umbilical artery ligation (SUAL) or sham surgery (control, AG). Fetal catheters and flow probes were implanted to measure carotid and femoral arterial blood flows. Ewes containing SUAL fetuses were randomized to receive either maternal administration of saline or SC (36 mg i.v. per day) beginning 4 days after surgery, and continuing for 20 days. Physiological recordings were obtained throughout the study. Antenatal SC treatment reduced body weight by 32% and oxygenation by 18% in SUAL compared to AG. SC did not alter maternal or fetal heart rate or blood pressure. Femoral blood flow and peripheral oxygen delivery were increased by 49% and 30% respectively in SUALSC compared to SUAL, indicating impaired cardiovascular adaptation to chronic hypoxaemia. Antenatal SC directly impairs the fetal haemodynamic response to chronic hypoxaemia. Consideration of the consequences upon the fetus should be paramount when administering interventions to the mother during pregnancy.


Assuntos
Retardo do Crescimento Fetal , Feto , Animais , Feminino , Desenvolvimento Fetal , Hipóxia , Gravidez , Ovinos , Citrato de Sildenafila/farmacologia
17.
Exp Physiol ; 105(8): 1256-1267, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436635

RESUMO

NEW FINDINGS: What is the central question of this study? What is the immediate impact of moderate preterm birth on the structure and function of major conduit arteries using a pre-clinical sheep model? What is the main finding and its importance? Postnatal changes in conduit arteries, including a significant decrease in collagen within the thoracic aortic wall (predominately males), narrowed carotid arteries, reduced aortic systolic blood flow, and upregulation of the mRNA expression of cell adhesion and inflammatory markers at 2 days of age in preterm lambs compared to controls, may increase the risk of cardiovascular impairment in later life. ABSTRACT: The aim of this work was to compare the structure and function of the conduit arteries of moderately preterm and term-born lambs and to determine whether vascular injury-associated genes were upregulated. Time-mated ewes were induced to deliver either preterm (132 ± 1 days of gestation; n = 11 females and n = 10 males) or at term (147 ± 1 days of gestation; n = 10 females and n = 5 males). Two days after birth, ultrasound imaging of the proximal ascending aorta, main, right and left pulmonary arteries, and right and left common carotid arteries was conducted in anaesthetized lambs. Lambs were then killed and segments of the thoracic aorta and left common carotid artery were either snap frozen for real-time PCR analyses or immersion-fixed for histological quantification of collagen, smooth muscle and elastin within the medial layer. Overall there were few differences in vascular structure between moderately preterm and term lambs. However, there was a significant decrease in the proportion of collagen within the thoracic aortic wall (predominantly in males), narrowing of the common carotid arteries and a reduction in peak aortic systolic blood flow in preterm lambs. In addition, there was increased mRNA expression of the cell adhesion marker P-selectin in the thoracic aortic wall and the pro-inflammatory marker IL-1ß in the left common carotid artery in preterm lambs, suggestive of postnatal vascular injury. Early postnatal differences in the function and structure of conduit arteries and evidence of vascular injury in moderately preterm offspring may place them at greater risk of cardiovascular impairment later in life.


Assuntos
Artérias Carótidas/fisiopatologia , Nascimento Prematuro/fisiopatologia , Artéria Pulmonar/fisiopatologia , Animais , Animais Recém-Nascidos , Aorta/fisiopatologia , Aorta Torácica/fisiopatologia , Colágeno/metabolismo , Feminino , Expressão Gênica , Hemodinâmica , Masculino , Ovinos
18.
Arterioscler Thromb Vasc Biol ; 39(4): 731-740, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30841708

RESUMO

Objective- The objective of this study was to investigate the effect of intravenous maternal sildenafil citrate (SC) administration on vascular function in growth-restricted fetal sheep. Approach and Results- Fetal growth restriction (FGR) results in cardiovascular adaptations that redistribute cardiac output to optimize suboptimal intrauterine conditions. These adaptations result in structural and functional cardiovascular changes, which may underlie postnatal neurological and cardiovascular sequelae. Evidence suggests SC, a potent vasodilator, may improve FGR. In contrast, recent clinical evidence suggests potential for adverse fetal consequence. Currently, there is limited data on SC effects in the developing fetus. We hypothesized that SC in utero would improve vascular development and function in an ovine model of FGR. Preterm lambs (0.6 gestation) underwent sterile surgery for single umbilical artery ligation or sham (control, appropriately grown) surgery to replicate FGR. Ewes received continuous intravenous SC (36 mg/24 h) or saline from surgery until 0.83 gestation. Fetuses were delivered and immediately euthanized for collection of femoral and middle cerebral artery vessels. Vessel function was assessed via in vitro wire myography. SC exacerbated growth restriction in growth-restricted fetuses and resulted in endothelial dysfunction in the cerebral and femoral vasculature, irrespective of growth status. Dysfunction in the cerebral circulation is endothelial, whereas smooth muscle in the periphery is the origin of the deficit. Conclusions- SC crosses the placenta and alters key fetal vascular development. Extensive studies are required to investigate the effects of SC on fetal development to address safety before additional use of SC as a treatment.


Assuntos
Retardo do Crescimento Fetal/induzido quimicamente , Lesões Pré-Natais/induzido quimicamente , Citrato de Sildenafila/toxicidade , Vasodilatadores/toxicidade , Acetilcolina/farmacologia , Animais , Peso ao Nascer/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Débito Cardíaco/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Feminino , Sangue Fetal/química , Desenvolvimento Fetal/efeitos dos fármacos , Retardo do Crescimento Fetal/fisiopatologia , Guanilato Ciclase/análise , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Óxido Nítrico/fisiologia , Nitroprussiato/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Gravidez , Lesões Pré-Natais/fisiopatologia , Ovinos , Citrato de Sildenafila/sangue , Vasodilatação/efeitos dos fármacos
19.
J Physiol ; 597(4): 1209-1220, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29746007

RESUMO

KEY POINTS: Approximately 5-10% pregnancies are affected by fetal growth restriction. Preterm infants affected by fetal growth restriction have a higher incidence of bronchopulmonary dysplasia. The present study is the first to measure pulmonary artery thickness and stiffness. The findings show that impaired vasculogenesis may be a contributory factor in the higher incidence of bronchopulmonary dysplasia in preterm growth restricted infants. The study addresses the mechanistic link between fetal programming and vascular architecture and mechanics. ABSTRACT: Bronchopulmonary dysplasia is the most common respiratory sequelae of prematurity and histopathologically features fewer, dysmorphic pulmonary arteries. The present study aimed to characterize pulmonary artery mechanics and cardiac function in preterm infants with fetal growth restriction (FGR) compared to those appropriate for gestational age (AGA) in the early neonatal period. This prospective study reviewed 40 preterm infants between 28 to 32 weeks gestational age (GA). Twenty infants had a birthweight <10th centile and were compared with 20 preterm AGA infants. A single high resolution echocardiogram was performed to measure right pulmonary arterial and right ventricular (RV) indices. The GA and birthweight of FGR and AGA infants were 29.8 ± 1.3 vs. 30 ± 0.9 weeks (P = 0.78) and 923.4 g ± 168 vs. 1403 g ± 237 (P < 0.001), respectively. Assessments were made at 10.5 ± 1.3 days after birth. The FGR infants had significantly thicker right pulmonary artery inferior wall (843.5 ± 68 vs. 761 ± 40 µm, P < 0.001) with reduced pulsatility (51.6 ± 7.6 µm vs. 59.7 ± 7.5 µm, P = 0.001). The RV contractility [fractional area change (28.7 ± 3.8% vs 32.5 ± 3.1%, P = 0.001), tricuspid annular peak systolic excursion (TAPSE) (5.2 ± 0.3% vs. 5.9 ± 0.7%, P = 0.0002) and myocardial performance index (0.35 ± 0.03 vs. 0.28 ± 0.02, P < 0.001)] was significantly impaired in FGR infants. Significant correlation between RV longitudinal contractility (TAPSE) and time to peak velocity/RV ejection time (measure of RV afterload) was noted (r2  =  0.5, P < 0.001). Altered pulmonary vascular mechanics and cardiac performance reflect maladaptive changes in response to utero-placental insufficiency. Whether managing pulmonary vascular disease will alter clinical outcomes remains to be studied prospectively.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Retardo do Crescimento Fetal/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Displasia Broncopulmonar/etiologia , Débito Cardíaco , Feminino , Frequência Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Contração Miocárdica , Artéria Pulmonar/embriologia , Artéria Pulmonar/patologia
20.
Pediatr Res ; 86(1): 47-54, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30982059

RESUMO

BACKGROUND: Efficacy of surfactant therapy in fetal growth restricted (FGR) preterm neonates is unknown. METHODS: Twin-bearing ewes underwent surgery at 105 days gestation to induce FGR in one twin by single umbilical artery ligation. At 123-127 days, catheters and flow probes were implanted in pulmonary and carotid arteries to measure flow and pressure. Lambs were delivered, intubated and mechanically ventilated. At 10 min, surfactant (100 mg kg-1) was administered. Ventilation, oxygenation, and hemodynamic responses were recorded for 1 h before euthanasia at 120 min. Lung tissue and bronchoalveolar lavage fluid was collected for analysis of surfactant protein mRNA and phosphatidylcholines (PCs). RESULTS: FGR preterm lambs were 26% lighter than appropriate for gestational age (AGA) lambs and had baseline differences in lung mechanics and pulmonary blood flows. Surfactant therapy reduced ventilator and oxygen requirements and improved lung mechanics in both groups, although a more rapid improvement in compliance and tidal volume was observed in AGA lambs. Surfactant administration was associated with decreased mean pulmonary and carotid blood flow in FGR but not AGA lambs. No major differences in surfactant protein mRNA or PC levels were noted. CONCLUSIONS: Surfactant therapy was associated with an altered pulmonary and cerebral hemodynamic response in preterm FGR lambs.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Pulmão/metabolismo , Surfactantes Pulmonares/uso terapêutico , Animais , Animais Recém-Nascidos , Encéfalo/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar , Retardo do Crescimento Fetal/metabolismo , Coração/efeitos dos fármacos , Coração/fisiopatologia , Pulmão/efeitos dos fármacos , Oxigênio/metabolismo , Fosfatidilcolinas/metabolismo , RNA Mensageiro/metabolismo , Carneiro Doméstico , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA