Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Pharm Res ; 37(4): 80, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253527

RESUMO

PURPOSE: Investigate the possibility of delivering teriparatide orally using nanoemulsion. METHOD: Teriparatide was allowed to interact with chitosan in the presence of HPßCD.The formed polyelectrolyte complex (PEC) was characterized by DSC, FTIR, DLS and for entrapment efficiency. PEC was the incorporated in an oil phase consisting of Oleic Acid, Labrasol and Plurol Oleique to form a nanoemulsion. This preparation was characterized for refractive index, viscosity, pH, conductivity, particle size, and morphology.Bioavailability of the preparation was evaluated using rabbits against SC injection. The efficacy of the formula was tested using ovariectomized rats (an osteoporosis animal model) and mechanical and histological tests were conducted on their bones. The stability of the preparation was evaluated by storing samples at 4o C, 25o C and 40o C for three months. RESULTS: PEC testing demonstrate a complex formation with particle size of 208 nm, zeta potential of +17 mV and entrapment efficiency of 49%. For the nanoemulsion, the results demonstrate the formation of a nano-sized dispersed system (108 nm) with a drug loading of 98% and a percent protection of 90% and 71% in SGF and SIF respectively. Bioavailability results showed a sustained release profile was achieved following the oral formulation administration. Efficacy studies showed improvement in the strength, thickness and connectivity of bones. Short-term stability study demostrated that the nanoemulsion is mostly stable at 4o C. CONCLUSION: These findings demonstrate the ability of delivering Teriparatide orally using oleic acid based dispersion in combination with chitosan PEC.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Quitosana/química , Portadores de Fármacos/química , Nanopartículas/química , Ácido Oleico/química , Teriparatida/administração & dosagem , Administração Oral , Animais , Conservadores da Densidade Óssea/sangue , Conservadores da Densidade Óssea/química , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Composição de Medicamentos , Estabilidade de Medicamentos , Excipientes/química , Feminino , Camundongos , Células NIH 3T3 , Osteoporose/tratamento farmacológico , Tamanho da Partícula , Coelhos , Ratos Sprague-Dawley , Propriedades de Superfície , Teriparatida/sangue , Teriparatida/química
2.
Molecules ; 24(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487813

RESUMO

Glyoxalase-I (Glo-I) enzyme was established to be a valid target for anticancer drug design. It performs the essential detoxification step of harmful byproducts, especially methylglyoxal. A robust computer-aided drug design approach was used to design and validate a series of compounds with selenium or sulfur based heterorings. A series of in-house multi-armed 1,2,3-selenadiazole and 1,2,3-thiadiazole benzene derivatives were tested for their Glo-I inhibitory activity. Results showed that these compounds bind Glo-I active sites competitively with strong potential to inhibit this enzyme with IC50 values in micro-molar concentration. Docking poses revealed that these compounds interact with the zinc atom at the bottom of the active site, which plays an essential role in its viability.


Assuntos
Acetanilidas/farmacologia , Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Acetanilidas/química , Sítios de Ligação , Inibidores Enzimáticos/química , Humanos , Ligação de Hidrogênio , Lactoilglutationa Liase/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
3.
Drug Dev Res ; 79(2): 58-69, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29285772

RESUMO

Hit, Lead & Candidate Discovery Glyoxalase-I (Glo-I) enzyme has emerged as a potential target for cancer treatment. Several classes of natural products including coumarins and flavonoids have shown remarkable Glo-I inhibitory activity. In the present study, computational and experimental approaches were used to explore the structure-activity relationships of a panel of 24 flavonoids as inhibitors of the Glo-1 enzyme. Scutellarein with an IC50 value of 2.04 µM was identified as the most potent inhibitor among the series studied. Di- or tri-hydroxylation of the benzene rings A and B accompanied with a C2/C3 double bond in ring C were identified as essential structural features for enzyme inhibition. Moreover, the ketol system showed a minor role in the inhibitory power of these compounds. The structure-activity relationships revealed in this study had deepened our understanding of the Glo-I inhibitory activities of flavonoids and opened the door for further exploration of this promising compound class.


Assuntos
Flavonoides/química , Flavonoides/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/química , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
4.
Vet World ; 14(8): 2097-2101, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34566326

RESUMO

BACKGROUND AND AIM: Diagnosis of fascioliasis depends on clinical symptoms and routine laboratory tests. Recently, antibodies and circulating antigens of Fasciola were used for detecting active infections. Therefore, this study aimed to identify Fasciola gigantica antigens in the sera of infected cattle using Western blotting and enzyme-linked immunosorbent assay (ELISA) for an accurate diagnosis of cattle infected with F. gigantica. MATERIALS AND METHODS: Serum samples were obtained from 108, 23, and 19 cattle infected with Fasciola gigantica, Paramphistomum cervi, and Strongylids, respectively, including 57 non-infected cattle that were used as healthy cattle for the study. Western blotting and ELISA were then used to detect circulating Fasciola antigens at 27 kDa. RESULTS: The target epitope was detected in an F. gigantica adult-worm antigen preparation, excretory/secretory products, and serum from cattle infected with F. gigantica. However, it was absent in sera from P. cervi, Strongylids, and healthy cattle. The purified 27 kDa F. gigantica (FPA-27) antigen was also detected in cattle serum using ELISA with high degrees of sensitivity and specificity (94% and 82%, respectively), and the area under the receiver operating characteristic curve was 0.89 with a highly significant correlation of p<0.0001. CONCLUSION: The FPA-27 is proposed to be a promising candidate for the serodiagnosis of fascioliasis in cattle.

5.
Acta Pharm ; 71(1): 115-130, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697740

RESUMO

The glyoxalase system, particularly glyoxalase-I (GLO-I), has been approved as a potential target for cancer treatment. In this study, a set of structurally diverse polyphenolic natural compounds were investigated as potential GLO-I inhibitors. Ellagic acid was found, computationally and experimentally, to be the most potent GLO-I inhibitor among the tested compounds which showed an IC50 of 0.71 mmol L-1. Its binding to the GLO-I active site seemed to be mainly driven by ionic interaction via its ionized hydroxyl groups with the central Zn ion and Lys156, along with other numerous hydrogen bonding and hydrophobic interactions. Due to its unique and rigid skeleton, it can be utilized to search for other novel and potent GLO-I inhibitors via computational approaches such as pharmacophore modeling and similarity search methods. Moreover, an inspection of the docked poses of the tested compounds showed that chlorogenic acid and dihydrocaffeic acid could be considered as lead compounds worthy of further optimization.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Ácido Elágico/química , Ácido Elágico/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Domínio Catalítico , Simulação por Computador , Ensaios de Triagem em Larga Escala , Ligação de Hidrogênio , Lactoilglutationa Liase/química , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Zinco/química
6.
Vet World ; 14(3): 589-594, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935402

RESUMO

BACKGROUND AND AIM: Paracetamol (PCM) ingestion is one of the most frequent global causes of toxicity. Salvadora persica L. is a plant that among many other effects exhibits potent antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. In this study, we investigated the possible protective effect of S. persica aqueous extract in the PCM overdose-induced liver and kidney injury and hematological changes in a mice model. MATERIALS AND METHODS: Mice were given PCM with and without S. persica pretreatment. Blood cell counts and liver and kidney function biomarkers were measured. Liver and kidney samples were histologically examined. RESULTS: A single overdose of PCM caused significant elevations of alanine and aspartate transaminases, alkaline phosphate, bilirubin, urea, uric acid, and creatinine compared with the control group. In addition, PCM toxicity significantly lowered red blood cell count but insignificantly increased both white blood cell and platelet counts in comparison to the control mice. Pretreatment with S. persica significantly prevented PCM-induced changes in hepatic and renal biomarkers. S. persica also caused marked reversal of hematological changes. Histologically, the liver and kidney showed inflammation and necrosis after PCM treatment, which were significantly reduced in mice pretreated with S. persica. CONCLUSION: Taken together, S. persica significantly inhibited PCM-induced renal, hepatic, and hematological toxicity, pointing to its possible use in the treatment of liver and renal disorders.

7.
Vet World ; 13(8): 1517-1523, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33061221

RESUMO

BACKGROUND AND AIM: The beta toxin is causing the most severe Clostridium perfringens-related diseases. This work was dedicated to developing a vaccine against beta toxin using C. perfringens type C (NCTC 3180). MATERIALS AND METHODS: The crude toxoid harvest contained 710 limits of flocculation (Lf)/mL. The vaccine was formulated. Each 1 mL of the final vaccine product contained at least 50 Lf/mL of beta toxoids, 0.2 mL 3% aluminum hydroxide gel (equivalent to 5.18 mg of aluminum), <0.001% W/V thiomersal, formaldehyde <0.05% W/V, and ~0.7 mL phosphate-buffered saline (pH 7.2). The efficacy of the vaccine was evaluated by potency, stability, and safety tests. RESULTS: The vaccine demonstrated 24.36 IU/mL (standard deviation, ±0.56) and 14.74 IU/mL (±0.36) of neutralizing antibodies in rabbits and cattle, respectively. Indeed, these levels were above the minimum recommended by international protocols since the obtained antibody levels had 2.43- and 1.47-fold increase in both rabbits and cattle, respectively, over the minimum antitoxin level suggested by the United States Department of Agriculture. Interestingly, our formulation was capable of inducing 1.65-fold higher immune responses in rabbits than that stimulated in cattle (65% increase) with a significant difference (p<0.0001). The vaccine was stable up to 30 months. The vaccinated rabbits were suffered from a temporarily slight increase in temperatures in the first 10 h without any significant difference (p>0.05). CONCLUSION: The research showed a procedure for the manufacturing process of the vaccine against C. perfringens beta toxins with a feasible quantity and the vaccine described here showed to be effective in eliciting levels of neutralizing antibodies higher than required by international standards. In addition, The vaccine was stable up to 30 months. Thus, it may represent an effective and safe for preventing C. perfringens-related diseases in rabbits and cattle, although further studies to prove its efficacy in the field on other farm animals are still needed.

8.
Comput Biol Chem ; 80: 102-110, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30947068

RESUMO

Glyoxalase system is an ubiquitous system in human cells which has been examined thoroughly for its role in different diseases. It comprises two enzymes; Glyoxalase I (Glo-I) and Glyoxalase II (Glo-II) which perform detoxifying endogenous harmful metabolites, mainly methylglyoxal (MG) into non-toxic bystanders. In silico computer Aided Drug Design approaches were used and ninety two diverse pharmacophore models were generated from eighteen Glyoxalase I crystallographic complexes. Subsequent QSAR modeling followed by ROC evaluation identified a single pharmacophore model which was able to predict the expected Glyoxalase I inhibition. Screening of the National Cancer Institute (NCI) database using the optimal pharmacophore Hypo(3VW9) identified several promising hits. Thirty eight hits were successfully predicted then ordered and evaluated in vitro. Seven hits out of the thirty eight tested compounds showed more than 50% inhibition with low micromolar IC50.


Assuntos
Antineoplásicos/metabolismo , Inibidores Enzimáticos/metabolismo , Lactoilglutationa Liase/antagonistas & inibidores , Lactoilglutationa Liase/metabolismo , Antineoplásicos/química , Domínio Catalítico , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Lactoilglutationa Liase/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Curva ROC , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Sulfonamidas/química , Sulfonamidas/metabolismo
9.
Mini Rev Med Chem ; 19(4): 281-291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30306863

RESUMO

Glyoxalase system is a ubiquitous system in human cells which has been examined thoroughly for its role in different disease conditions. It is composed of Glyoxalase-I (Glo-I) and Glyoxalase- II which perform an essential metabolic process inside the cell by detoxifying endogenous harmful metabolites, mainly methylglyoxal (MG) into non-toxic D-lactic acid. Tumor cells are well-known for their high metabolic rate which results in elevated levels of toxic metabolites. The over-expression of Glo-I in tumor cells makes this enzyme a pivotal target for anticancer drug development. Glo-I is metalloenzyme with two polypeptide chains and encompasses two active sites with an integral zinc atoms at their center. This review aims to highlight the important role of Glo-I in different pathogenic conditions, and more importantly, it provides a thorough discussion of all known human Glo-I inhibitors since its discovery, a hundred years ago, up to date. It embraces the different classes they belong to, their design and chemical structures. We believe this review will help guide the design of novel and potent human Glo-I inhibitors by providing a handy reference for interested researchers in this target.


Assuntos
Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Biocatálise , Humanos , Lactoilglutationa Liase/metabolismo
10.
Drug Des Devel Ther ; 10: 2623-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574401

RESUMO

BACKGROUND: The glyoxalase system including two thiol-dependent enzymes, glyoxalase I (Glo-I) and glyoxalase II, plays an important role in a ubiquitous metabolic pathway involved in cellular detoxification of cytotoxic 2-oxoaldehydes. Tumor cells have high glycolytic activity, leading to increased cellular levels of these toxic metabolites. The increased activity of the detoxification system in cancerous cells makes this pathway a viable target for developing novel anticancer agents. In this study, we examined the potential utility of non-glutathione-based inhibitors of the Glo-I enzyme as novel anticancer drugs. METHODS: Computer-aided drug design techniques, such as customized pharmacophoric features, virtual screening, and flexible docking, were used to achieve the project goals. Retrieved hits were extensively filtered and subsequently docked into the active site of the enzyme. The biological activities of retrieved hits were assessed using an in vitro assay against Glo-I. RESULTS: Since Glo-I is a zinc metalloenzyme, a customized Zn-binding pharmacophoric feature was used to search for selective inhibitors via virtual screening of a small-molecule database. Seven hits were selected, purchased, and biologically evaluated. Three of the seven hits inhibited Glo-I activity, the most effective of which exerted 76.4% inhibition at a concentration of 25 µM. CONCLUSION: We successfully identified a potential Glo-I inhibitor that can serve as a lead compound for further optimization. Moreover, our in silico and experimental results were highly correlated. Hence, the docking protocol adopted in this study may be efficiently employed in future optimization steps.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Lactoilglutationa Liase/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Desenho Assistido por Computador , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lactoilglutationa Liase/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Drug Des Devel Ther ; 8: 129-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24470754

RESUMO

BACKGROUND: The dipeptidyl peptidase-IV (DPP-IV) enzyme is considered a pivotal target for controlling normal blood sugar levels in the body. Incretins secreted in response to ingestion of meals enhance insulin release to the blood, and DPP-IV inactivates these incretins within a short period and stops their action. Inhibition of this enzyme escalates the action of incretins and induces more insulin to achieve better glucose control in diabetic patients. Thus, inhibition of this enzyme will lead to better control of blood sugar levels. METHODS: In this study, computer-aided drug design was used to help establish a novel N-substituted aminobenzamide scaffold as a potential inhibitor of DPP-IV. CDOCKER software available from Discovery Studio 3.5 was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the DPP-IV enzyme. The designed compounds were synthesized and tested against a DPP-IV enzyme kit provided by Enzo Life Sciences. The synthesized compounds were characterized using proton and carbon nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and determination of melting point. RESULTS: Sixty-nine novel compounds having an N-aminobenzamide scaffold were prepared, with full characterization. Ten of these compounds showed more in vitro activity against DPP-IV than the reference compounds, with the most active compounds scoring 38% activity at 100 µM concentration. CONCLUSION: The N-aminobenzamide scaffold was shown in this study to be a valid scaffold for inhibiting the DPP-IV enzyme. Continuing work could unravel more active compounds possessing the same scaffold.


Assuntos
Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Desenho de Fármacos , Simulação de Acoplamento Molecular
12.
Pharmaceuticals (Basel) ; 6(6): 700-15, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24276257

RESUMO

Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor's binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski's "rule of five" and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA