Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 29(27): 275302, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29633719

RESUMO

Dense arrays of pillars, with diameters of 64 and 25 nm, were made from a perpendicular CoFeB magnetic tunnel junction thin film stack using block copolymer lithography. While the soft layer and hard layer in the 64 nm pillars reverse at different fields, the reversal of the two layers in the 25 nm pillars could not be distinguished, attributed to the strong interlayer magnetostatic coupling. First-order reversal curves were used to identify the steps that occur during switching, and the thermal stability and effective switching volume were determined from scan rate dependent hysteresis measurements.

2.
Nanotechnology ; 27(18): 185302, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27005330

RESUMO

Perpendicular magnetic tunnel junctions (p-MTJs) were patterned into nanopillars using electron-beam lithography to study their scaling and switching behaviour. Magnetoresistance measurements of annealed and unannealed p-MTJ films using scanning probe microscopy showed good agreement with Monte Carlo modeling. p-MTJ pillars demonstrated clear parallel magnetic states, both 'up' or both 'down' following AC-demagnetization. Significant variability in the resistance of p-MTJ pillars was observed and attributed to edge features generated during patterning or local inhomogeneity in the MgO layer.

3.
Sci Rep ; 11(1): 8504, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875725

RESUMO

Tetherless sensors have long been positioned to enable next generation applications in biomedical, environmental, and industrial sectors. The main challenge in enabling these advancements is the realization of a device that is compact, robust over time, and highly efficient. This paper presents a tetherless optical tag which utilizes optical energy harvesting to realize scalable self-powered devices. Unlike previous demonstrations of optically coupled sensor nodes, the device presented here amplifies signals and encodes data on the same optical beam that provides its power. This optical interrogation modality results in a highly efficient data link. These optical tags support data rates up to 10 Mb/s with an energy consumption of ~ 3 pJ/bit. As a proof-of-concept application, the optical tag is combined with a spintronic microwave detector based on a magnetic tunnel junction (MTJ). We used this hybrid opto-spintronic system to perform self-powered transduction of RF waves at 1 GHz to optical frequencies at ~ 200 THz, while carrying an audio signal across (see Supplementary Data for audio files).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA