Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2119297119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776546

RESUMO

Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.


Assuntos
Anfípodes , Extremidades , Regeneração , Anfípodes/embriologia , Anfípodes/genética , Animais , Embrião não Mamífero , Extremidades/embriologia , Expressão Gênica , Regeneração/genética
2.
Dev Biol ; 448(2): 260-270, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217598

RESUMO

Locomotion by tail beating powered by a system of bilateral paraxial muscle and notochord is likely one of the key evolutionary innovations that facilitated the origin and radiation of chordates. The innovation of paraxial muscle was accompanied by gene duplications in stem chordates that gave rise to muscular actins from cytoplasmic ancestral forms, which acquired contractile capability thanks to the recruitment of the myosin motor-machinery. To better understand the role of actin diversification during the evolution of chordates, in this work we have characterized the complete actin catalogue of the appendicularian Oikopleura dioica, an urochordate that maintains a chordate body plan throughout its life, including the notochord in a muscled tail that confers an active free-living pelagic style. Our genomic survey, phylogenetic analyses and Diagnostic-Actin-Values (DAVs) reveal that O. dioica has four muscular actins (ActnM1-4) and three cytoplasmic actins (ActnC1-3), most of which originated by independent gene duplications during the evolution of the appendicularian lineage. Detailed developmental expression atlas of the complete actin catalogue of O. dioica reveals differences in the temporal-regulation and tissue-specificity of different actin paralogs, suggesting complex processes of subfunctionalization during the evolution of urochordates. Our results suggest the presence of a "cardio-paraxial" muscular actin at least in the last common ancestor of Olfactores (i.e. vertebrates+urochordates). Our results reveal highly dynamic tissue-specific expression patterns for some cytoplasmic actins, including the notochord, ciliated cells and neurons with axonal projections, which challenge the classic housekeeping notion ascribed to these genes. Considering that previous work had demonstrated the existence of notochord-specific actins in cephalochordates, the tissue-specific expression of two cytoplasmic actins in the notochord of O. dioica suggests that this pattern plausibly reflects the ancestral condition of chordates, and provides new insights to better understand the evolutionary origin of the notochord.


Assuntos
Actinas/metabolismo , Cordados/embriologia , Coração/embriologia , Modelos Biológicos , Músculos/metabolismo , Notocorda/embriologia , Citoesqueleto de Actina/metabolismo , Actinas/genética , Animais , Cordados/genética , Desenvolvimento Embrionário/genética , Evolução Molecular , Notocorda/metabolismo
3.
Sci Adv ; 8(34): eabn9823, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36001670

RESUMO

Animals can regenerate complex organs, yet this process frequently results in imprecise replicas of the original structure. In the crustacean Parhyale, embryonic and regenerating legs differ in gene expression dynamics but produce apparently similar mature structures. We examine the fidelity of Parhyale leg regeneration using complementary approaches to investigate microanatomy, sensory function, cellular composition, and cell molecular profiles. We find that regeneration precisely replicates the complex microanatomy and spatial distribution of external sensory organs and restores their sensory function. Single-nuclei sequencing shows that regenerated and uninjured legs are indistinguishable in terms of cell-type composition and transcriptional profiles. This remarkable fidelity highlights the ability of organisms to achieve identical outcomes via distinct processes.

4.
Commun Biol ; 1: 121, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272001

RESUMO

Investigating environmental hazards than could affect appendicularians is of prime ecological interest because they are among the most abundant components of the mesozooplankton. This work shows that embryo development of the appendicularian Oikopleura dioica is compromised by diatom bloom-derived biotoxins, even at concentrations in the same range as those measured after blooms. Developmental gene expression analysis of biotoxin-treated embryos uncovers an aberrant golf ball-like phenotype affecting morphogenesis, midline convergence, and tail elongation. Biotoxins induce a rapid upregulation of defensome genes, and considerable delay and silencing of zygotic transcription of developmental genes. Upon a possible future intensification of blooms associated with ocean warming and acidification, our work puts an alert on the potential impact that an increase of biotoxins may have on marine food webs, and points to defensome genes as molecular biosensors that marine ecologists could use to monitor the genetic stress of natural populations exposed to microalgal blooms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA