Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 150(5): 868-880, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751446

RESUMO

Surgical resection with lymphadenectomy and perioperative chemotherapy is the universal mainstay for curative treatment of gastric cancer (GC) patients with locoregional disease. However, GC survival remains asymmetric in West- and East-world regions. We hypothesize that this asymmetry derives from differential clinical management. Therefore, we collected chemo-naïve GC patients from Portugal and South Korea to explore specific immunophenotypic profiles related to disease aggressiveness and clinicopathological factors potentially explaining associated overall survival (OS) differences. Clinicopathological and survival data were collected from chemo-naïve surgical cohorts from Portugal (West-Europe cohort [WE-C]; n = 170) and South Korea (East-Asia cohort [EA-C]; n = 367) and correlated with immunohistochemical expression profiles of E-cadherin and CD44v6 obtained from consecutive tissue microarrays sections. Survival analysis revealed a subset of 12.4% of WE-C patients, whose tumors concomitantly express E-cadherin_abnormal and CD44v6_very high, displaying extremely poor OS, even at TNM stages I and II. These WE-C stage-I and -II patients tumors were particularly aggressive compared to all others, invading deeper into the gastric wall (P = .032) and more often permeating the vasculature (P = .018) and nerves (P = .009). A similar immunophenotypic profile was found in 11.9% of EA-C patients, but unrelated to survival. Tumours, from stage-I and -II EA-C patients, that display both biomarkers, also permeated more lymphatic vessels (P = .003), promoting lymph node (LN) metastasis (P = .019), being diagnosed on average 8 years earlier and submitted to more extensive LN dissection than WE-C. Concomitant E-cadherin_abnormal/CD44v6_very-high expression predicts aggressiveness and poor survival of stage-I and -II GC submitted to conservative lymphadenectomy.


Assuntos
Biomarcadores Tumorais/análise , Caderinas/análise , Receptores de Hialuronatos/análise , Neoplasias Gástricas/mortalidade , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Excisão de Linfonodo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia
2.
J Biochem Mol Toxicol ; 35(3): e22663, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33125183

RESUMO

Imidazo[1,2-a]pyridines (IP) and organoselenium compounds have been widely exploited in medicinal chemistry due to their pharmacological activities. Hepatocellular carcinoma (HCC) has few treatment options, and unfortunately, the prognosis is poor. Thus, the development of novel therapeutic drugs is urgent. The present study aimed at evaluating the antitumor mechanism of selenylated IP against HepG2 cells and in vivo. The selenylated IP named IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine) showed high cytotoxicity against HepG2 cells (half-maximal inhibitory concentration [IC50 ] = 0.03 µM) and selectivity for this tumor cell line. At nontoxic concentration, IP-Se-06 decreased the protein levels of Bcl-xL and increased the levels of p53, leading to inhibition of cell proliferation and apoptosis. This compound decreased the level of extracellular signal-regulated kinase 1/2 protein and changed the levels of proteins involved in the drive of the cell cycle, tumor growth, and survival (cyclin B1, cyclin-dependent kinase 2). In addition, IP-Se-06 decreased the number of cells in the S phase. In addition, IP-Se-06 led to increased generation of reactive oxygen species, changed antioxidant defenses, and caused DNA fragmentation. Finally, IP-Se-06 significantly inhibited the growth of Ehrlich ascites tumors in mice, increased survival time, and inhibited angiogenesis. Therefore, IP-Se-06 may be an important compound regarding the development of a therapeutic drug for HCC treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piridinas/farmacologia , Animais , Antineoplásicos/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organosselênicos/química , Piridinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Gastric Cancer ; 22(1): 77-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29779068

RESUMO

BACKGROUND: Gastric cancer with lymphoid stroma (GCLS) is characterized by prominent stromal infiltration of T-lymphocytes. The aim of this study was to investigate GCLS biology through analysis of clinicopathological features, EBV infection, microsatellite instability (MSI), immune gene-expression profiling and PD-L1 status in neoplastic cells and tumor immune microenvironment. METHODS: Twenty-four GCLSs were analyzed by RNA in situ hybridization for EBV (EBER), PCR/fragment analysis for MSI, immunohistochemistry (PD-L1, cytokeratin, CD3, CD8), co-immunofluorescence (CK/PD-L1, CD68/PD-L1), NanoString gene-expression assay for immune-related genes and PD-L1 copy number alterations. CD3+ and CD8+ T-cell densities were calculated by digital analysis. Fifty-four non-GCLSs were used as control group. RESULTS: GCLSs displayed distinctive clinicopathological features, such as lower pTNM stage (p = 0.02) and better overall survival (p = 0.01). EBV+ or MSI-high phenotype was found in 66.7 and 16.7% cases, respectively. GCLSs harbored a cytotoxic T-cell-inflamed profile, particularly at the invasive front of tumors (p < 0.01) and in EBV+ cases (p = 0.01). EBV+ GCLSs, when compared to EBV- GCLSs, showed higher mRNA expression of genes related to Th1/cytotoxic and immunosuppressive biomarkers. PD-L1 protein expression, observed in neoplastic and immune stromal cells (33.3 and 91.7%, respectively), and PD-L1 amplification (18.8%) were restricted to EBV+/MSI-high tumors and correlated with high values of PD-L1 mRNA expression. CONCLUSIONS: This study shows that GCLS has a distinctive clinico-pathological and molecular profile. Furthermore, through an in-depth study of tumor immune microenvironment-by digital analysis and mRNA expression profiling-it highlights the role of EBV infection in promoting an inflamed tumor microenvironment, with putative therapeutic implications.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Gástricas/patologia , Microambiente Tumoral/imunologia , Adulto , Idoso , Antígeno B7-H1/biossíntese , Infecções por Vírus Epstein-Barr/complicações , Feminino , Herpesvirus Humano 4 , Humanos , Imunofenotipagem , Inflamação/genética , Inflamação/imunologia , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Transcriptoma , Microambiente Tumoral/genética
4.
Biochem Biophys Res Commun ; 503(3): 1291-1297, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017191

RESUMO

A novel series of selenylated imidazo[1,2-a]pyridines were designed and synthesized with a view to a promising activity against breast cancer cell. The compounds, 7-methyl-3-(naphthalene-1-ylselanyl)-2-phenylimidazo[1,2-a]pyridine, named IP-Se-05, and 3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazo[1,2-a]pyridine, named IP-Se-06, showed high cytotoxicity for MCF-7 cells (IC50 = 26.0 µM and 12.5 µM, respectively). Both the compounds inhibited the cell proliferation and caused decrease in the number of cells in the G2/M phase of cell cycle. IP-Se-05 and IP-Se-06 were also evaluated for effects on CT-DNA and DNA of MCF-7 cells. The compounds intercalated into CT-DNA and both treatments caused cleavage of DNA in cells. In addition, the compounds induced cell death by apoptosis. However, the presence of (2-methoxyphenyl) selenyl moiety at the imidazo[1,2-a]pyridine (IP-Se-06) appears to have a better antitumor effect with higher cytotoxicity at a lower concentration and caused less necrosis. Overall, the current study established IP-Se-06 more than IP-Se-05 as a potential prototype compound to be employed as an antiproliferative agent for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Clivagem do DNA/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
5.
Pathobiology ; 85(1-2): 50-63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28618420

RESUMO

Gastric cancer (GC) represents a global health concern. Despite advances in prevention, diagnosis, and therapy, GC is still the third leading cause of cancer mortality worldwide, with more than 720,000 estimated deaths in 2012. Overall survival for advanced disease is about 1 year, a dismal prognosis that is partly due to the high levels of biological heterogeneity found in GC. Indeed, GC is a highly heterogeneous disease from morphological and molecular standpoints. The numerous histological and molecular classifications currently available reflect such heterogeneity. Although recent high-throughput studies cluster the molecular data obtained into subgroups with clinical relevance, we still need a practical, prognostic, and predictive classification system, integrating morphological and molecular features, towards the identification of novel therapeutic targets. It is noteworthy that GC heterogeneity encompasses not only interpatient variability (intertumour heterogeneity), but also variations within the same tumour (intratumour heterogeneity). The latter encompasses spatial heterogeneity (in different tumour areas) and temporal heterogeneity (along progression from primary to recurrent and/or metastatic disease). In this review, we analyse the morphological, immunophenotypic, and molecular heterogeneity in GC as the basis for a better understanding of the disease, and discuss the practical implications for diagnostic pathology, prognostic evaluation, and precision therapy.


Assuntos
Biomarcadores Tumorais/genética , Heterogeneidade Genética , Neoplasias Gástricas/classificação , Progressão da Doença , Humanos , Medicina de Precisão , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
6.
Int J Cancer ; 141(7): 1478-1489, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28639285

RESUMO

Gastric cancer (GC) is the 3rd deadliest cancer worldwide, due to limited treatment options and late diagnosis. Human epidermal growth factor receptor-2 (HER2) is overexpressed in ∼20% of GC cases and anti-HER2 antibody trastuzumab in combination with conventional chemotherapy, is recognized as standard therapy for HER2-positive metastatic GC. This strategy improves GC patients' survival by 2-3 months, however its optimal results in breast cancer indicate that GC survival may be improved. A new photoimmunoconjugate was developed by conjugating a porphyrin with trastuzumab (Trast:Porph) for targeted photodynamic therapy in HER2-positive GC. Using mass spectrometry analysis, the lysine residues in the trastuzumab structure most prone for porphyrin conjugation were mapped. The in vitro data demonstrates that Trast:Porph specifically binds to HER2-positive cells, accumulates intracellularly, co-localizes with lysosomal marker LAMP1, and induces massive HER2-positive cell death upon cellular irradiation. The high selectivity and cytotoxicity of Trast:Porph based photoimmunotherapy is confirmed in vivo in comparison with trastuzumab alone, using nude mice xenografted with a HER2-positive GC cell line. In the setting of human disease, these data suggest that repetitive cycles of Trast:Porph photoimmunotherapy may be used as an improved treatment strategy in HER2-positive GC patients.


Assuntos
Antineoplásicos/uso terapêutico , Morte Celular , Imunoterapia/métodos , Fotoquimioterapia/métodos , Porfirinas/uso terapêutico , Receptor ErbB-2 , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Lisina/química , Proteínas de Membrana Lisossomal/farmacocinética , Masculino , Espectrometria de Massas , Camundongos Nus , Porfirinas/química , Porfirinas/farmacocinética , Distribuição Aleatória , Neoplasias Gástricas/metabolismo , Trastuzumab/química , Trastuzumab/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Cancer ; 134(6): 1270-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24105655

RESUMO

Tumour drug resistance is a major issue in the management of lung cancer patients as almost all lung tumours are either intrinsically resistant or quickly develop acquired resistance to chemotherapeutic drugs. Cancer drug resistance has recently been linked, at least in part, to the existence of cancer stem-like cells (CSLCs), a small sub-population of cells within the tumour that possess stem-like properties. CSLCs are often isolated by fluorescence activated cell sorting (FACS) according to the expression of certain stem-like cell membrane markers. Conflicting results regarding the specificity of particular stem cell surface markers for isolating CSLCs have, however, been recently reported. Therefore, alternative strategies enabling the identification and study of CSLCs should be considered, particularly in tumour types where appropriate stem cell markers are not well established and validated, like in lung cancer. In this article, we review data indicating therapy-selection as a valid approach for putative lung CSLCs enrichment. We believe that this strategy would be determinant for correctly assessing and characterising the sub-populations of CSLCs that are able to survive chemo or radiotherapy regimens and, at the same time, also have the ability to recapitulate and sustain tumour growth. Using therapy-induced enrichment of CSLCs may, therefore, prove to be an extremely useful method for studying CSLCs and provide new clues regarding potential therapeutic targets for their efficient elimination, which will undoubtedly play a decisive role in improving lung cancer patients' survival.


Assuntos
Terapia Combinada/efeitos adversos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/terapia , Células-Tronco Neoplásicas/patologia , Animais , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação
8.
Front Mol Biosci ; 9: 809985, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586191

RESUMO

Serine tRNAs (tRNASer) are frequently overexpressed in tumors and associated with poor prognosis and increased risk of recurrence in breast cancer. Impairment of tRNA biogenesis and abundance also impacts proteome homeostasis, and activates protein quality control systems. Herein, we aimed at testing whether increasing tRNASer abundance could foster tumor establishment through activation of the UPR. In order to do so, firstly we confirmed that the expression of tRNA-Ser-AGA-2-1 [hereafter tRNASer(AGA)] was upregulated by 1.79-fold in Stage I NSCLC tumors when compared to normal adjacent tissue. To study the impact of tRNASer(AGA) in early stage tumorigenesis, we induced its upregulation in a non-tumoral bronchial cell line, BEAS-2B. Upregulation of this tRNA increased cellular proliferation and protein synthesis rate, driven by eIF2α dephosphorylation and ATF4 activation downstream of PERK signaling. Futhermore, tRNASer(AGA) enhanced transformation potential in vitro, and promoted the establishment of slow growing tumors with aggressive features in nude mice. Our work highlights the importance of studying tRNA deregulation on early stage tumorigenesis, as they may be potential malignancy and aggressiveness biomarkers.

10.
Nucleic Acids Res ; 37(22): e150, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19828597

RESUMO

The Comet assay (CA) is a sensitive/simple measure of genotoxicity. However, many features of CA contribute variability. To minimize these, we have introduced internal standard materials consisting of 'reference' cells which have their DNA substituted with BrdU. Using a fluorescent anti-BrdU antibody, plus an additional barrier filter, comets derived from these cells could be readily distinguished from the 'test'-cell comets, present in the same gel. In experiments to evaluate the reference cell comets as external and internal standards, the reference and test cells were present in separate gels on the same slide or mixed together in the same gel, respectively, before their co-exposure to X-irradiation. Using the reference cell comets as internal standards led to substantial reductions in the coefficient of variation (CoV) for intra- and inter-experimental measures of comet formation and DNA damage repair; only minor reductions in CoV were noted when the reference and test cell comets were in separate gels. These studies indicate that differences between individual gels appreciably contribute to CA variation. Further studies using the reference cells as internal standards allowed greater significance to be obtained between groups of replicate samples. Ultimately, we anticipate that development will deliver robust quality assurance materials for CA.


Assuntos
Ensaio Cometa/normas , Dano ao DNA , Reparo do DNA , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Humanos , Padrões de Referência , Reprodutibilidade dos Testes
11.
Front Oncol ; 11: 752127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745981

RESUMO

Debulking surgery followed by chemotherapy are the standard of care for high-grade serous carcinoma. After an initial good response to treatment, the majority of patients relapse with a chemoresistant profile, leading to a poor overall survival. Chemotherapy regimens used in high-grade serous carcinomas are based in a combination of classical chemotherapeutic drugs, namely, Carboplatin and Paclitaxel. The mechanisms underlying drug resistance and new drug discovery are crucial to improve patients' survival. To uncover the molecular mechanisms of chemoresistance and test drugs capable of overcoming this resistant profile, it is fundamental to use good cellular models capable of mimicking the chemoresistant disease. Herein, we established two high-grade serous carcinoma cell lines with intrinsic resistance to Carboplatin and induced Paclitaxel resistance (OVCAR8 PTX R C and OVCAR8 PTX R P) derived from the OVCAR8 cell line. These two chemoresistant cell line variants acquired an enhanced resistance to Paclitaxel-induced cell death by increasing the drug efflux capacity, and this resistance was stable in long-term culture and following freeze/thaw cycles. The mechanism underlying Paclitaxel resistance resides in a significant increase in P-glycoprotein expression and, when this drug efflux pump was blocked with Verapamil, cells re-acquired Paclitaxel sensitivity. We generated two high-grade serous carcinoma cell lines, with a double-chemoresistant (Carboplatin and Paclitaxel) phenotype that mimics the majority of tumor recurrences in ovarian cancer context. This robust tool is suitable for preliminary drug testing towards the development of therapeutic strategies to overcome chemoresistance.

12.
IEEE J Biomed Health Inform ; 25(2): 393-402, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32750958

RESUMO

Immunohistochemical (IHC) analysis of tissue biopsies is currently used for clinical screening of solid cancers to assess protein expression. The large amount of image data produced from these tissue samples requires specialized computational pathology methods to perform integrative analysis. Even though proteins are traditionally studied independently, the study of protein co-expression may offer new insights towards patients' clinical and therapeutic decisions. To explore protein co-expression, we constructed a modular image analysis pipeline to spatially align tissue microarray (TMA) image slides, evaluate alignment quality, define tumor regions, and ultimately quantify protein expression, before and after tumor segmentation. The pipeline was built with open-source tools that can manage gigapixel slides. To evaluate the consensus between pathologist and computer, we characterized a cohort of 142 gastric cancer (GC) cases regarding the extent of E-cadherin and CD44v6 expression. We performed IHC analysis in consecutive TMA slides and compared the automated quantification with the pathologists' manual assessment. Our results show that automated quantification within tumor regions improves agreement with the pathologists' classification. A co-expression map was created to identify the cores co-expressing both proteins. The proposed pipeline provides not only computational tools forwarding current pathology practices to explore co-expression, but also a framework for merging data and transferring information in learning-based approaches to pathology.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias , Biópsia , Humanos , Imuno-Histoquímica
13.
Cancers (Basel) ; 13(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498681

RESUMO

Gastric cancer (GC) patients display increased regulatory T cell (Tregs) numbers in peripheral blood and among tumor-infiltrating lymphocytes. Nevertheless, the role of Tregs in GC progression remains controversial. Here, we sought to explore the impact of Tregs in GCs with distinct histology, and whether Tregs can directly influence tumor cell behavior and GC development. We performed a comprehensive immunophenotyping of 82 human GC cases, through an integrated analysis of multispectral immunofluorescence detection of T cells markers and patient clinicopathological data. Moreover, we developed 3D in vitro co-cultures with Tregs and tumor cells that were followed by high-throughput and light-sheet imaging, and their biological features studied with conventional/imaging flow cytometry and Western blotting. We showed that Tregs located at the tumor nest were frequent in intestinal-type GCs but did not associate with increased levels of effector T cells. Our in vitro results suggested that Tregs preferentially infiltrated intestinal-type GC spheroids, induced the expression of IL2Rα and activation of MAPK signaling pathway in tumor cells, and promoted spheroid growth. Accumulation of Tregs in intestinal-type GCs was increased at early stages of the stomach wall invasion and in the absence of vascular and perineural invasion. In this study, we proposed a non-immunosuppressive mechanism through which Tregs might directly modulate GC cells and thereby promote tumor growth. Our findings hold insightful implications for therapeutic strategies targeting intestinal-type GCs and other tumors with similar immune context.

14.
Biomedicines ; 9(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34572441

RESUMO

In gastric cancer (GC), biomarkers that define prognosis and predict treatment response remain scarce. We hypothesized that the extent of CD44v6 membranous tumor expression could predict prognosis and therapy response in GC patients. Two GC surgical cohorts, from Portugal and South Korea (n = 964), were characterized for the extension of CD44v6 membranous immuno-expression, clinicopathological features, patient survival, and therapy response. The value of CD44v6 expression in predicting response to treatment and its impact on prognosis was determined. High CD44v6 expression was associated with invasive features (perineural invasion and depth of invasion) in both cohorts and with worse survival in the Portuguese GC cohort (HR 1.461; 95% confidence interval 1.002-2.131). Patients with high CD44v6 tumor expression benefited from conventional chemotherapy in addition to surgery (p < 0.05), particularly those with heterogeneous CD44v6-positive and -negative populations (CD44v6_3+) (p < 0.007 and p < 0.009). Our study is the first to identify CD44v6 high membranous expression as a potential predictive marker of response to conventional treatment, but it does not clarify CD44v6 prognostic value in GC. Importantly, our data support selection of GC patients with high CD44v6-expressing tumors for conventional chemotherapy in addition to surgery. These findings will allow better stratification of GC patients for treatment, potentially improving their overall survival.

15.
Cancers (Basel) ; 12(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842638

RESUMO

De novo expressed CD44 isoforms containing exon-v6 are frequently associated with gastric cancer (GC) aggressiveness, and may predict chemotherapy response in vitro. Whether exon-v6 itself is responsible for conferring these properties to CD44v6-containing isoforms remains to be elucidated. CRISPR/Cas9 and Phosphorodiamidate Morpholino oligomers (PMOs) were used to induce specific exon-v6 skipping, maintaining the CD44 reading frame, in two GC cell lines endogenously expressing CD44v6. Cisplatin and 5-fluorouracil treatment response, and self-renewal ability was compared between CRISPR/Cas9-edited, CD44v6 knockdown and mock cells. We obtained homozygous genome-edited cell lines with exon-v6 deletion. Edited cells transcribed CD44v isoforms presenting in frame v5-v7 splicing, mimicking exon-v6 skipping. Results showed that removing specifically exon-v6 sensitizes cells to cisplatin and impairs cells' self-renewal ability, similarly to CD44v6 knockdown. In parallel, we also tested a clinically feasible approach for transient exon-v6 skipping with a PMO-based strategy. We demonstrate that exon-v6 specific removal from CD44v isoforms increases cell sensitivity to cisplatin and impairs GC cells self-renewal. We trust that a PMO approach designed towards CD44v6 overexpressing GC cells may be a suitable approach to sensitize tumor cells for conventional therapy.

16.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252293

RESUMO

CD44v6-containing isoforms are frequently de novo expressed in gastric cancer (GC). Whether CD44v6 has a central role in GC transformation and/or progression, whether it conditions response to therapy or whether it is only a bystander marker is still not known. Therefore, we aimed to clarify the role of CD44v6 in GC. We generated GC isogenic cell lines stably expressing CD44s or CD44v6 and tested them for different cancer hallmarks and response to cisplatin, and we further confirmed our findings in cells that endogenously express CD44v6. No correlation between overexpression of CD44v6 and the tested cancer hallmarks was observed, suggesting CD44v6 is not a driver of GC progression. Upon cisplatin treatment, CD44v6+ cells survive better and have lower apoptosis levels than CD44v6- cells, possibly due to concomitant activation of STAT3 and P38. In co-culture experiments, we discovered that CD44v6+ cells are involved in GC cell overgrowth after cisplatin treatment. In conclusion, we show that CD44v6 expression increases cell survival in response to cisplatin treatment in GC cells and that these cells override CD44v6-negative cells after cisplatin-treatment. This suggests that tumor expression of CD44v6-containing variants may condition the outcome of GC patients treated with chemotherapy.

17.
Toxicol Lett ; 185(1): 23-31, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19095052

RESUMO

Polybrominated diphenyl ethers (PBDEs) are commonly used as flame retardants in a variety of commercial and household products. They have been detected in the environment and accumulate in mammalian tissues and fluids. PBDE toxicity is thought to be associated with endocrine disruption, developmental neurotoxicity and changes in fetal development. Although humans are exposed to PBDEs, our knowledge of the effects of PBDE metabolites on human cells with respect to health risk is insufficient. Two hydroxylated PBDEs (OH-PBDEs), 2-OH-BDE47 and 2-OH-BDE85, were investigated for their effects on cell viability/proliferation, DNA damage, cell cycle distribution and gene expression profiling in H295R adrenocortical carcinoma cells. We show that the two agents are cytotoxic in a dose-dependent manner only at micromolar concentrations, with 2-OH-BDE85 being more toxic than 2-OH-BDE47. However, no DNA damage was observed for either chemical, suggesting that the biological effects of OH-PBDEs occur primarily via non-genotoxic routes. Furthermore, no evidence of aryl hydrocarbon receptor (AHR)-mediated, dioxin-like toxicity was observed. Instead, we report that a micromolar concentration of OH-PBDEs induces transcriptional changes associated with endoplasmic reticulum stress and the unfolded protein response. We discuss whether OH-PBDE bioaccumulation could result in impairment of the adrenocortical secretory function.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Perfilação da Expressão Gênica , Éteres Difenil Halogenados/toxicidade , Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Retículo Endoplasmático/efeitos dos fármacos , Éteres Difenil Halogenados/metabolismo , Humanos
18.
Int J Cancer ; 122(8): 1810-9, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18074354

RESUMO

Systemic chemotherapy is extensively used in cancer therapy, however, for many treatments' response rates are limited. Furthermore, certain regimens are frequently associated with significant morbidity and occasional mortality. Consequently, when alternative options exist, it is desirable to reserve a particular chemotherapy for those patients whose tumours will respond. Therefore, attention is turning to the development of techniques that could provide predictive information regarding a tumour's particular chemosensitivity, as a means of enhancing patient selection for that specific treatment. One approach has been to focus on measures of DNA damage formation and repair as being potentially predictive of cancer cell chemosensitivity, the premise being that higher levels of induced DNA damage (resulting from the chemotherapeutic agents) and/or deficiencies in DNA damage repair are indicative of greater sensitivity. In the present study we have investigated the Comet assay response of a panel of non-small cell lung cancer cell lines towards cisplatin and found an inverse correlation between sensitivity and damage formation resulting from this agent. Moreover, an inverse correlation was found between resistance and extent of damage repair. Further analysis of multiple alternate cellular end-points (including cell cycle analysis, apoptosis and gene expression changes) revealed cisplatin damage tolerance to be a chemoresistance mechanism in this model system. This study highlights damage tolerance mechanisms as potentially confounding factors in attempts to develop predictive tests based on measures of genotoxicity. To address this we would argue that a range of multiple end-points should be analysed to ascertain the "complete predictive picture".


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Ensaio Cometa , Reagentes de Ligações Cruzadas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cruzamentos Genéticos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
19.
Mol Cancer Ther ; 6(11): 3071-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18025290

RESUMO

Dietary phytochemicals exhibit chemopreventive potential in vivo through persistent low-dose exposures, whereas mechanistic in vitro studies with these agents generally use a high-dose single treatment. Because the latter approach is not representative of an in vivo steady state, we investigated antitumor activity of curcumin, 3,3'-diindolylmethane (DIM), epigallocatechin gallate (EGCG), genistein, or indole-3-carbinol (I3C) in breast cancer MDA-MB-231 cells, exposed in long-term culture to low concentrations, achievable in vivo. Curcumin and EGCG increased cell doubling time. Curcumin, EGCG, and I3C inhibited clonogenic growth by 55% to 60% and induced 1.5- to 2-fold higher levels of the basal caspase-3/7 activity. No changes in expression of cell cycle-related proteins or survivin were found; however, I3C reduced epidermal growth factor receptor expression, contributing to apoptosis. Because some phytochemicals are shown to inhibit DNA and histone modification, modulation of expression by the agents in a set of genes (cadherin-11, p21Cip1, urokinase-type plasminogen activator, and interleukin-6) was compared with changes induced by inhibitors of DNA methylation or histone deacetylation. The phytochemicals modified protein and/or RNA expression of these genes, with EGCG eliciting the least and DIM the most changes in gene expression. DIM and curcumin decreased cadherin-11 and increased urokinase-type plasminogen activator levels correlated with increased cell motility. Curcumin, DIM, EGCG, and genistein reduced cell sensitivity to radiation-induced DNA damage without affecting DNA repair. This model has revealed that apoptosis and not arrest is likely to be responsible for growth inhibition. It also implicated new molecular targets and activities of the agents under conditions relevant to human exposure.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Dieta , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/patologia , Biomarcadores Tumorais/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Dano ao DNA , Genisteína/farmacologia , Humanos , Indóis/farmacologia , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Fatores de Tempo
20.
Eur J Med Chem ; 155: 503-515, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908443

RESUMO

Novel pyrimidinic selenoureas were synthesized and evaluated against tumour and normal cell lines. Among these, the compound named 3j initially showed relevant cytotoxicity and selectivity for tumour cells. Three analogues of 3j were designed and synthesized keeping in view the structural requirements of this compound. Almost all the tested compounds displayed considerable cytotoxicity. However, 8a, one of the 3j analogues, was shown to be highly selective and cytotoxic, especially for breast carcinoma cells (MCF-7) (IC50 = 3.9 µM). Furthermore, 8a caused DNA damage, inhibited cell proliferation, was able to arrest cell cycle in S phase, and induced cell death by apoptosis in human breast carcinoma cells. Moreover, predictions of pharmacokinetic properties showed that 8a may present good absorption and permeation characteristics for oral administration. Overall, the current study established 8a as a potential drug prototype to be employed as a DNA interactive cytotoxic agent for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Pirimidinas/farmacologia , Ureia/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ureia/síntese química , Ureia/química , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA