Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Clin Immunol ; 44(4): 86, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578389

RESUMO

BACKGROUND: The CDC and ACIP recommend COVID-19 vaccination for patients with inborn errors of immunity (IEI). Not much is known about vaccine safety in IEI, and whether vaccination attenuates infection severity in IEI. OBJECTIVE: To estimate COVID-19 vaccination safety and examine effect on outcomes in patients with IEI. METHODS: We built a secure registry database in conjunction with the US Immunodeficiency Network to examine vaccination frequency and indicators of safety and effectiveness in IEI patients. The registry opened on January 1, 2022, and closed on August 19, 2022. RESULTS: Physicians entered data on 1245 patients from 24 countries. The most common diagnoses were antibody deficiencies (63.7%). At least one COVID-19 vaccine was administered to 806 patients (64.7%), and 216 patients received vaccination prior to the development of COVID-19. The most common vaccines administered were mRNA-based (84.0%). Seventeen patients were reported to seek outpatient clinic or emergency room care for a vaccine-related complication, and one patient was hospitalized for symptomatic anemia. Eight hundred twenty-three patients (66.1%) experienced COVID-19 infection. Of these, 156 patients required hospitalization (19.0%), 47 required ICU care (5.7%), and 28 died (3.4%). Rates of hospitalization (9.3% versus 24.4%, p < 0.001), ICU admission (2.8% versus 7.6%, p = 0.013), and death (2.3% versus 4.3%, p = 0.202) in patients who had COVID-19 were lower in patients who received vaccination prior to infection. In adjusted logistic regression analysis, not having at least one COVID-19 vaccine significantly increased the odds of hospitalization and ICU admission. CONCLUSION: Vaccination for COVID-19 in the IEI population appears safe and attenuates COVID-19 severity.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Vacinas contra COVID-19/efeitos adversos , Vacinação , Hospitalização , Cuidados Críticos
2.
Allergy Asthma Proc ; 45(5): 371-383, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39294909

RESUMO

Primary immunodeficiencies, also commonly called inborn errors of immunity (IEI), are commonly due to developmental or functional defects in peripheral blood cells derived from hematopoietic stem cells. In light of this, for the past 50 years, hematopoietic stem cell transplantation (HSCT) has been used as a definitive therapy for IEI. The fields of both clinical immunology and transplantation medicine have had significant advances. This, in turn, has allowed for both an increasing ability to determine a monogenic etiology for many IEIs and an increasing ability to successfully treat these patients with HSCT. Therefore, it has become more common for the practicing allergist/immunologist to diagnose and manage a broad range of patients with IEI before and after HSCT. This review aims to provide practical guidance for the clinical allergist/immunologist on the basics of HSCT and known outcomes in selected forms of IEI, the importance of pre-HSCT supportive care, and the critical importance of and guidance for life-long immunologic and medical monitoring of these patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Síndromes de Imunodeficiência/terapia , Síndromes de Imunodeficiência/diagnóstico , Doenças da Imunodeficiência Primária/terapia , Doenças da Imunodeficiência Primária/diagnóstico , Resultado do Tratamento
3.
J Clin Immunol ; 43(2): 512-520, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36378426

RESUMO

PURPOSE: Biallelic loss-of-function variants in IKBKB cause severe combined immunodeficiency. We describe a case of autoimmunity and autoinflammation in a male infant with a heterozygous gain-of-function (GOF) IKBKB variant. METHODS: Case report and review of the literature. We performed in silico variant analysis, measurement of plasma soluble biomarkers associated with immune activation, functional stimulation of patient peripheral blood mononuclear cells, and functional validation of variants transduced in Jurkat cells. RESULTS: A patient with two heterozygous IKBKB variants (E518K and T559M) presents with previously undescribed autoimmune cytopenias and autoinflammation. He had decreased TNF-α-induced IkBα degradation in vitro, and had increased serum biomarkers associated with macrophage recruitment and activation. Jurkat cells transduced with the IKKb T559M variant showed increased basal levels of phosphorylation of IKKα/b and p65, and higher degradation of IkBα suggesting a GOF mechanism. No significant changes were observed in Jurkat cells transduced with the E518K variant. CONCLUSIONS: A GOF variant in IKBKB may associate with autoinflammation and autoimmunity highlighting a novel clinical phenotype.


Assuntos
Autoimunidade , Quinase I-kappa B , Masculino , Humanos , Autoimunidade/genética , Quinase I-kappa B/genética , Mutação com Ganho de Função , Leucócitos Mononucleares , Biomarcadores
5.
WIREs Mech Dis ; 14(4): e1554, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384409

RESUMO

Early in development, B cells explosively diversify B-cell receptors (BCRs) to recognize a wide variety of microbial antigens. A variety of developmental and tolerance checkpoints are subsequently deployed at later developmental stages to purge useless or potentially dangerous autoreactive B-cell clones. Once B cells recognize cognate antigens within secondary lymphoid tissues, their BCRs are genetically modified to increase the specificity and strength of antigen binding. Identification and investigation of monogenic inborn errors of immunity (IEI) diseases demonstrate which specific molecules and pathways are essential for developing well-tolerized human B cells. Although rare, IEI patients have provided important mechanistic insights into, and therapeutic clues for, patients afflicted with more common autoantibody associated autoimmune diseases like lupus, rheumatoid arthritis, and type 1 diabetes. This article is categorized under: Immune System Diseases > Stem Cells and Development > Genetics/Genomics/Epigenetics.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Antígenos/metabolismo , Autoanticorpos , Centro Germinativo , Humanos , Tolerância Imunológica/genética , Receptores de Antígenos de Linfócitos B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA