Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301653

RESUMO

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Assuntos
Linfócitos B , Tonsila Palatina , Humanos , Adulto , Linfócitos B/metabolismo
2.
Gut ; 66(3): 530-540, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26658144

RESUMO

OBJECTIVE: Sorafenib is effective in hepatocellular carcinoma (HCC), but patients ultimately present disease progression. Molecular mechanisms underlying acquired resistance are still unknown. Herein, we characterise the role of tumour-initiating cells (T-ICs) and signalling pathways involved in sorafenib resistance. DESIGN: HCC xenograft mice treated with sorafenib (n=22) were explored for responsiveness (n=5) and acquired resistance (n=17). Mechanism of acquired resistance were assessed by: (1) role of T-ICs by in vitro sphere formation and in vivo tumourigenesis assays using NOD/SCID mice, (2) activation of alternative signalling pathways and (3) efficacy of anti-FGF and anti-IGF drugs in experimental models. Gene expression (microarray, quantitative real-time PCR (qRT-PCR)) and protein analyses (immunohistochemistry, western blot) were conducted. A novel gene signature of sorafenib resistance was generated and tested in two independent cohorts. RESULTS: Sorafenib-acquired resistant tumours showed significant enrichment of T-ICs (164 cells needed to create a tumour) versus sorafenib-sensitive tumours (13 400 cells) and non-treated tumours (1292 cells), p<0.001. Tumours with sorafenib-acquired resistance were enriched with insulin-like growth factor (IGF) and fibroblast growth factor (FGF) signalling cascades (false discovery rate (FDR)<0.05). In vitro, cells derived from sorafenib-acquired resistant tumours and two sorafenib-resistant HCC cell lines were responsive to IGF or FGF inhibition. In vivo, FGF blockade delayed tumour growth and improved survival in sorafenib-resistant tumours. A sorafenib-resistance 175 gene signature was characterised by enrichment of progenitor cell features, aggressive tumorous traits and predicted poor survival in two cohorts (n=442 patients with HCC). CONCLUSIONS: Acquired resistance to sorafenib is driven by T-ICs with enrichment of progenitor markers and activation of IGF and FGF signalling. Inhibition of these pathways would benefit a subset of patients after sorafenib progression.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fatores de Crescimento de Fibroblastos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Somatomedinas/metabolismo , Idoso , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Niacinamida/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor IGF Tipo 1 , Receptores de Somatomedina/antagonistas & inibidores , Receptores de Somatomedina/metabolismo , Transdução de Sinais , Somatomedinas/antagonistas & inibidores , Somatomedinas/genética , Sorafenibe , Esferoides Celulares , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Gastroenterology ; 151(6): 1192-1205, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27614046

RESUMO

BACKGROUND & AIMS: Effective treatments are urgently needed for hepatocellular carcinoma (HCC), which is usually diagnosed at advanced stages. Signaling via the insulin-like growth factor (IGF) pathway is aberrantly activated in HCC by IGF2 overexpression. We aimed to elucidate the mechanism of IGF2 overexpression and its oncogenic activities and evaluate the anti-tumor effects of reducing IGF2 signaling. METHODS: We obtained 228 HCC samples from patients who underwent liver resection, 168 paired non-tumor adjacent cirrhotic liver samples, and 10 non-tumor liver tissues from patients undergoing resection for hepatic hemangioma. We analyzed gene expression, microRNA, and DNA methylation profiles for all samples, focusing on genes in the IGF signaling pathway. IGF2 was expressed in SNU449 and PLC5 HCC cells and knocked down with small hairpin RNAs in Hep3B and Huh7 cell lines. We analyzed these cells for proliferation, apoptosis, migration, and colony formation. We performed studies in mice engineered to express Myc and Akt1 in liver, which develop liver tumors, with or without hepatic expression of Igf2. Mice with xenograft tumors grown from HCC cells were given a monoclonal antibody against IGF1 and IGF2 (xentuzumab), along with sorafenib; tumor growth was measured and tissues were analyzed by immunohistochemistry and immunoblots. RESULTS: Levels of IGF2 messenger RNA and protein were increased >20-fold in 15% of human HCC tissues compared with non-tumor liver tissues. Methylation at the fetal promoters of IGF2 was reduced in the HCC samples and cell lines that overexpressed IGF2, compared with those that did not overexpress this gene, and non-tumor tissues. Tumors that overexpressed IGF2 had gene expression patterns significantly associated with hepatic progenitor cell features, stellate cell activation, NOTCH signaling, and an aggressive phenotype (P < .0001). In mice engineered to express Myc and Akt1 in liver, co-expression of Igf2 accelerated formation of liver tumors, compared to mice with livers expressing only Myc and Akt1, and shortened survival times (P = .02). The antibody xentuzumab blocked phosphorylation of IGF1 receptor in HCC cell lines and reduced their proliferation and colony formation. In mice with xenograft tumors, injection of xentuzumab, with or without sorafenib, slowed tumor growth and increased survival times compared to vehicle or sorafenib alone. Xentuzumab inhibited phosphorylation of IGF1 receptor and AKT and reduced decreased tumor vascularization compared with vehicle. CONCLUSIONS: A large proportion of HCC samples were found to overexpress IGF2, via demethylation of its fetal promoter. Overexpression of IGF2 accelerates formation of liver tumors in mice with hepatic expression of MYC and AKT1, via activation of IGF1 receptor signaling. An antibody against IGF1 and IGF2 slows growth of xenograft tumors and increases survival of these mice.


Assuntos
Anticorpos Neutralizantes/farmacologia , Carcinoma Hepatocelular/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/genética , RNA Mensageiro/metabolismo , Animais , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Epigênese Genética , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno , Receptor IGF Tipo 1 , Receptores de Somatomedina/metabolismo , Transdução de Sinais/genética , Sorafenibe , Ensaio Tumoral de Célula-Tronco , Regulação para Cima
4.
Gastroenterology ; 148(4): 806-18.e10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25557953

RESUMO

BACKGROUND & AIMS: Fibrolamellar hepatocellular carcinoma (FLC) is a rare primary hepatic cancer that develops in children and young adults without cirrhosis. Little is known about its pathogenesis, and it can be treated only with surgery. We performed an integrative genomic analysis of a large series of patients with FLC to identify associated genetic factors. METHODS: By using 78 clinically annotated FLC samples, we performed whole-transcriptome (n = 58), single-nucleotide polymorphism array (n = 41), and next-generation sequencing (n = 48) analyses; we also assessed the prevalence of the DNAJB1-PRKACA fusion transcript associated with this cancer (n = 73). We performed class discovery using non-negative matrix factorization, and functional annotation using gene-set enrichment analyses, nearest template prediction, ingenuity pathway analyses, and immunohistochemistry. The genomic identification of significant targets in a cancer algorithm was used to identify chromosomal aberrations, MuTect and VarScan2 were used to identify somatic mutations, and the random survival forest was used to determine patient prognoses. Findings were validated in an independent cohort. RESULTS: Unsupervised gene expression clustering showed 3 robust molecular classes of tumors: the proliferation class (51% of samples) had altered expression of genes that regulate proliferation and mammalian target of rapamycin signaling activation; the inflammation class (26% of samples) had altered expression of genes that regulate inflammation and cytokine enriched production; and the unannotated class (23% of samples) had a gene expression signature that was not associated previously with liver tumors. Expression of genes that regulate neuroendocrine function, as well as histologic markers of cholangiocytes and hepatocytes, were detected in all 3 classes. FLCs had few copy number variations; the most frequent were focal amplification at 8q24.3 (in 12.5% of samples), and deletions at 19p13 (in 28% of samples) and 22q13.32 (in 25% of samples). The DNAJB1-PRKACA fusion transcript was detected in 79% of samples. FLC samples also contained mutations in cancer-related genes such as BRCA2 (in 4.2% of samples), which are uncommon in liver neoplasms. However, FLCs did not contain mutations most commonly detected in liver cancers. We identified an 8-gene signature that predicted survival of patients with FLC. CONCLUSIONS: In a genomic analysis of 78 FLC samples, we identified 3 classes based on gene expression profiles. FLCs contain mutations and chromosomal aberrations not previously associated with liver cancer, and almost 80% contain the DNAJB1-PRKACA fusion transcript. By using this information, we identified a gene signature that is associated with patient survival time.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Adolescente , Adulto , Idoso , Proliferação de Células/genética , Criança , Aberrações Cromossômicas , Análise por Conglomerados , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Variações do Número de Cópias de DNA , Feminino , Genoma , Proteínas de Choque Térmico HSP40/genética , Humanos , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Adulto Jovem
5.
Gastroenterology ; 144(4): 829-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23295441

RESUMO

BACKGROUND & AIMS: Cholangiocarcinoma, the second most common liver cancer, can be classified as intrahepatic cholangiocarcinoma (ICC) or extrahepatic cholangiocarcinoma. We performed an integrative genomic analysis of ICC samples from a large series of patients. METHODS: We performed a gene expression profile, high-density single-nucleotide polymorphism array, and mutation analyses using formalin-fixed ICC samples from 149 patients. Associations with clinicopathologic traits and patient outcomes were examined for 119 cases. Class discovery was based on a non-negative matrix factorization algorithm and significant copy number variations were identified by Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. Gene set enrichment analysis was used to identify signaling pathways activated in specific molecular classes of tumors, and to analyze their genomic overlap with hepatocellular carcinoma (HCC). RESULTS: We identified 2 main biological classes of ICC. The inflammation class (38% of ICCs) is characterized by activation of inflammatory signaling pathways, overexpression of cytokines, and STAT3 activation. The proliferation class (62%) is characterized by activation of oncogenic signaling pathways (including RAS, mitogen-activated protein kinase, and MET), DNA amplifications at 11q13.2, deletions at 14q22.1, mutations in KRAS and BRAF, and gene expression signatures previously associated with poor outcomes for patients with HCC. Copy number variation-based clustering was able to refine these molecular groups further. We identified high-level amplifications in 5 regions, including 1p13 (9%) and 11q13.2 (4%), and several focal deletions, such as 9p21.3 (18%) and 14q22.1 (12% in coding regions for the SAV1 tumor suppressor). In a complementary approach, we identified a gene expression signature that was associated with reduced survival times of patients with ICC; this signature was enriched in the proliferation class (P < .001). CONCLUSIONS: We used an integrative genomic analysis to identify 2 classes of ICC. The proliferation class has specific copy number alterations, activation of oncogenic pathways, and is associated with worse outcome. Different classes of ICC, based on molecular features, therefore might require different treatment approaches.


Assuntos
Colangiocarcinoma/genética , Colangiocarcinoma/mortalidade , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/epidemiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidade , Idoso , Neoplasias dos Ductos Biliares , Ductos Biliares Intra-Hepáticos , Biópsia por Agulha , Colangiocarcinoma/classificação , Colangiocarcinoma/patologia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Bases de Dados Factuais , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Hibridização In Situ , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/classificação , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
6.
Hepatology ; 57(1): 120-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22899566

RESUMO

UNLABELLED: Hepatocellular carcinoma (HCC) is one of the deadliest solid cancers and is the third leading cause of cancer-related death. There is a universal estimated male/female ratio of 2.5, but the reason for this is not well understood. The Sleeping Beauty (SB) transposon system was used to elucidate candidate oncogenic drivers of HCC in a forward genetics screening approach. Sex bias occurrence was conserved in our model, with male experimental mice developing liver tumors at reduced latency and higher tumor penetrance. In parallel, we explored sex differences regarding genomic aberrations in 235 HCC patients. Liver cancer candidate genes were identified from both sexes and genotypes. Interestingly, transposon insertions in the epidermal growth factor receptor (Egfr) gene were common in SB-induced liver tumors from male mice (10/10, 100%) but infrequent in female mice (2/9, 22%). Human single-nucleotide polymorphism data confirmed that polysomy of chromosome 7, locus of EGFR, was more frequent in males (26/62, 41%) than females (2/27, 7%) (P = 0.001). Gene expression-based Poly7 subclass patients were predominantly male (9/9) compared with 67% males (55/82) in other HCC subclasses (P = 0.02), and this subclass was accompanied by EGFR overexpression (P < 0.001). CONCLUSION: Sex bias occurrence of HCC associated with EGFR was confirmed in experimental animals using the SB transposon system in a reverse genetic approach. This study provides evidence for the role of EGFR in sex bias occurrences of liver cancer and as the driver mutational gene in the Poly7 molecular subclass of human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Cromossomos Humanos Par 7 , Receptores ErbB/genética , Neoplasias Hepáticas/genética , Fatores Sexuais , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica , Elementos de DNA Transponíveis , Feminino , Hepatócitos/patologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Mutagênese Insercional , beta Catenina/metabolismo
7.
Gastroenterology ; 143(6): 1660-1669.e7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22974708

RESUMO

BACKGROUND & AIMS: The Notch signaling pathway is activated in leukemia and solid tumors (such as lung cancer), but little is known about its role in liver cancer. METHODS: The intracellular domain of Notch was conditionally expressed in hepatoblasts and their progeny (hepatocytes and cholangiocytes) in mice. This was achieved through Cre expression under the control of an albumin and α-fetoprotein (AFP) enhancer and promoter (AFP-Notch intracellular domain [NICD]). We used comparative functional genomics to integrate transcriptome data from AFP-NICD mice and human hepatocellular carcinoma (HCC) samples (n = 683). A Notch gene signature was generated using the nearest template prediction method. RESULTS: AFP-NICD mice developed HCC with 100% penetrance when they were 12 months old. Activation of Notch signaling correlated with activation of 3 promoters of insulin-like growth factor 2; these processes appeared to contribute to hepatocarcinogenesis. Comparative functional genomic analysis identified a signature of Notch activation in 30% of HCC samples from patients. These samples had altered expression in Notch pathway genes and activation of insulin-like growth factor signaling, despite a low frequency of mutations in regions of NOTCH1 associated with cancer. Blocking Notch signaling in liver cancer cells with the Notch activation signature using γ-secretase inhibitors or by expressing a dominant negative form of mastermind-like 1 reduced their proliferation in vitro. CONCLUSIONS: Notch signaling is activated in human HCC samples and promotes formation of liver tumors in mice. The Notch signature is a biomarker of response to Notch inhibition in vitro.


Assuntos
Carcinoma Hepatocelular/fisiopatologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas/fisiopatologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Fator de Crescimento Insulin-Like II/fisiologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos , Mutação/genética , Receptores Notch/genética
8.
Science ; 381(6659): eadd7564, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590359

RESUMO

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologia
9.
J Hepatol ; 56(5): 1198-1200, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22173155

RESUMO

We present the analysis of the evolution of tumors in a case of hepatocellular carcinoma. This case is particularly informative about cancer growth dynamics and the underlying driving mutations. We sampled nine different sections from three tumors and seven more sections from the adjacent nontumor tissues.Selected sections were subjected to exon as well as whole-genome sequencing. Putative somatic mutations were then individually validated across all nine tumor and seven nontumor sections. Among the mutations validated, 24 were amino acid changes; in addition, 22 large indels/copy number variants (>1 Mb) were detected. These somatic mutations define four evolutionary lineages among tumor cells. Separate evolution and expansion of these lineages were recent and rapid, each apparently having only one lineage-specific protein coding mutation. Hence, by using a cell-population genetic definition,this approach identified three coding changes (CCNG1, P62,and an indel/fusion gene) as tumor driver mutations. These three mutations, affecting cell cycle control and apoptosis, are functionally distinct from mutations that accumulated earlier, many of which are involved in inflammation/immunity or cell anchoring. These distinct functions of mutations at different stages may reflect the genetic interactions underlying tumor growth.

10.
J Hepatol ; 56(6): 1343-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22322234

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous cancer in which sorafenib is the only approved systemic therapy. Histone deacetylases (HDAC) are commonly dysregulated in cancer and therefore represent promising targets for therapies, however their role in HCC pathogenesis is still unknown. We analyzed the expression of 11 HDACs in human HCCs and assessed the efficacy of the pan-HDAC inhibitor panobinostat alone and in combination with sorafenib in preclinical models of liver cancer. METHODS: Gene expression and copy number changes were analyzed in a cohort of 334 human HCCs, while the effects of panobinostat and sorafenib were evaluated in three liver cancer cell lines and a murine xenograft model. RESULTS: Aberrant HDAC expression was identified and validated in 91 and 243 HCCs, respectively. Upregulation of HDAC3 and HDAC5 mRNAs was significantly correlated with DNA copy number gains. Inhibiting HDACs with panobinostat led to strong anti-tumoral effects in vitro and vivo, enhanced by the addition of sorafenib. Cell viability and proliferation declined, while apoptosis and autophagy increased. Panobinostat increased histone H3 and HSP90 acetylation, downregulated BIRC5 (survivin) and upregulated CDH1. Combination therapy with panobinostat and sorafenib significantly decreased vessel density, and most significantly decreased tumor volume and increased survival in HCC xenografts. CONCLUSIONS: Aberrant expression of several HDACs and copy number gains of HDAC3 and HDAC5 occur in HCC. Treatment with panobinostat combined with sorafenib demonstrated the highest preclinical efficacy in HCC models, providing the rationale for clinical studies with this novel combination.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzenossulfonatos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Piridinas/administração & dosagem , Animais , Antígenos CD , Apoptose/efeitos dos fármacos , Autofagia , Caderinas/genética , Carcinoma Hepatocelular/patologia , Sinergismo Farmacológico , Humanos , Indóis , Proteínas Inibidoras de Apoptose/genética , Neoplasias Hepáticas/patologia , Niacinamida/análogos & derivados , Panobinostat , Compostos de Fenilureia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/análise , Sorafenibe , Survivina , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Gastroenterology ; 140(5): 1618-28.e16, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21324318

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous tumor that develops via activation of multiple pathways and molecular alterations. It has been a challenge to identify molecular classes of HCC and design treatment strategies for each specific subtype. MicroRNAs (miRNAs) are involved in HCC pathogenesis, and their expression profiles have been used to classify cancers. We analyzed miRNA expression in human HCC samples to identify molecular subclasses and oncogenic miRNAs. METHODS: We performed miRNA profiling of 89 HCC samples using a ligation-mediated amplification method. Subclasses were identified by unsupervised clustering analysis. We identified molecular features specific for each subclass using expression pattern (Affymetrix U133 2.0; Affymetrix, Santa Clara, CA), DNA change (Affymetrix STY Mapping Array), mutation (CTNNB1), and immunohistochemical (phosphor[p]-protein kinase B, p-insulin growth factor-IR, p-S6, p-epidermal growth factor receptor, ß-catenin) analyses. The roles of selected miRNAs were investigated in cell lines and in an orthotopic model of HCC. RESULTS: We identified 3 main clusters of HCCs: the wingless-type MMTV integration site (32 of 89; 36%), interferon-related (29 of 89; 33%), and proliferation (28 of 89; 31%) subclasses. A subset of patients with tumors in the proliferation subclass (8 of 89; 9%) overexpressed a family of poorly characterized miRNAs from chr19q13.42. Expression of miR-517a and miR-520c (from ch19q13.42) increased proliferation, migration, and invasion of HCC cells in vitro. MiR-517a promoted tumorigenesis and metastatic dissemination in vivo. CONCLUSIONS: We propose miRNA-based classification of 3 subclasses of HCC. Among the proliferation class, miR-517a is an oncogenic miRNA that promotes tumor progression. There is rationale for developing therapies that target miR-517a for patients with HCC.


Assuntos
Carcinoma Hepatocelular/classificação , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/classificação , MicroRNAs/genética , RNA Neoplásico/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/biossíntese , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas
12.
Gastroenterology ; 140(5): 1501-12.e2, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21320499

RESUMO

BACKGROUND & AIMS: In approximately 70% of patients with hepatocellular carcinoma (HCC) treated by resection or ablation, disease recurs within 5 years. Although gene expression signatures have been associated with outcome, there is no method to predict recurrence based on combined clinical, pathology, and genomic data (from tumor and cirrhotic tissue). We evaluated gene expression signatures associated with outcome in a large cohort of patients with early stage (Barcelona-Clinic Liver Cancer 0/A), single-nodule HCC and heterogeneity of signatures within tumor tissues. METHODS: We assessed 287 HCC patients undergoing resection and tested genome-wide expression platforms using tumor (n = 287) and adjacent nontumor, cirrhotic tissue (n = 226). We evaluated gene expression signatures with reported prognostic ability generated from tumor or cirrhotic tissue in 18 and 4 reports, respectively. In 15 additional patients, we profiled samples from the center and periphery of the tumor, to determine stability of signatures. Data analysis included Cox modeling and random survival forests to identify independent predictors of tumor recurrence. RESULTS: Gene expression signatures that were associated with aggressive HCC were clustered, as well as those associated with tumors of progenitor cell origin and those from nontumor, adjacent, cirrhotic tissues. On multivariate analysis, the tumor-associated signature G3-proliferation (hazard ratio [HR], 1.75; P = .003) and an adjacent poor-survival signature (HR, 1.74; P = .004) were independent predictors of HCC recurrence, along with satellites (HR, 1.66; P = .04). Samples from different sites in the same tumor nodule were reproducibly classified. CONCLUSIONS: We developed a composite prognostic model for HCC recurrence, based on gene expression patterns in tumor and adjacent tissues. These signatures predict early and overall recurrence in patients with HCC, and complement findings from clinical and pathology analyses.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia/diagnóstico , Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Feminino , Genótipo , Hepatectomia , Humanos , Incidência , Itália/epidemiologia , Japão/epidemiologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/epidemiologia , Prognóstico , Espanha/epidemiologia , Taxa de Sobrevida , Estados Unidos/epidemiologia
13.
Gastroenterol Hepatol ; 35(2): 94-101, 2012 Feb.
Artigo em Espanhol | MEDLINE | ID: mdl-22178501

RESUMO

Recently, interest in hepatocellular carcinoma (HCC) has grown due to its high mortality and increased incidence. Unlike other malignancies, HCC mainly arises in the context of chronic liver injury, complicating its management and the prediction of prognosis. The Barcelona Clinic Liver Cancer (BCLC) staging classification currently offers an efficient decision-making guide in these patients. However, preoperative identification of patients with a higher risk of recurrence after resection and of those who could benefit from liver transplantation despite not meeting the Milan criteria would be useful. New high-throughput genomic technologies that can be applied to paraffin-embedded tissue have facilitated the identification of gene signatures and other biomarkers able to predict prognosis in HCC patients. None of these biomarkers, based on transcriptome, microRNAs or metilome, has been incorporated into clinical practice, although in future they may be able to complement the prognostic value of clinical and pathologic variables.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamento farmacológico , Genômica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Prognóstico
14.
Nat Commun ; 13(1): 2885, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610203

RESUMO

Myeloid cells are central to homeostasis and immunity. Characterising in vitro myelopoiesis protocols is imperative for their use in research, immunotherapies, and understanding human myelopoiesis. Here, we generate a >470K cells molecular map of human induced pluripotent stem cells (iPSC) differentiation into macrophages. Integration with in vivo single-cell atlases shows in vitro differentiation recapitulates features of yolk sac hematopoiesis, before definitive hematopoietic stem cells (HSC) emerge. The diversity of myeloid cells generated, including mast cells and monocytes, suggests that HSC-independent hematopoiesis can produce multiple myeloid lineages. We uncover poorly described myeloid progenitors and conservation between in vivo and in vitro regulatory programs. Additionally, we develop a protocol to produce iPSC-derived dendritic cells (DC) resembling cDC2. Using CRISPR/Cas9 knock-outs, we validate the effects of key transcription factors in macrophage and DC ontogeny. This roadmap of myeloid differentiation is an important resource for investigating human fetal hematopoiesis and new therapeutic opportunities.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mielopoese , Diferenciação Celular/genética , Linhagem da Célula/genética , Genômica , Hematopoese/genética , Humanos , Mielopoese/genética
15.
Nat Cell Biol ; 24(10): 1487-1498, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109670

RESUMO

The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications.


Assuntos
Hepatócitos , Fígado , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Organoides , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Alcohol Clin Exp Res ; 35(5): 821-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21303380

RESUMO

Hepatocellular carcinoma (HCC) is one of the major causes of death among cirrhotic patients, being viral hepatitis and alcohol abuse, the main risk factors for its development. The introduction of highly sophisticated genomic technologies has spurred extensive research on the molecular pathogenesis of this devastating disease. Several signaling cascades have been consistently found dysregulated in HCC (e.g., WNT-ß-catenin, PI3K/AKT/MTOR, RAS/MAPK, IGF, HGF/MET, VEGF, EGFR, and PDGF). In addition, there have been numerous molecular classifications proposed for this disease, what provides an additional hint about its genomic complexity. The importance of knowing the molecular drivers of HCC is underscored by the positive results of a molecular targeted agent, sorafenib, able to improve survival in patients with advanced disease. This review will briefly outline key concepts in alcohol-related hepatocarcinogenesis, and provide some insight regarding current trends in translating HCC genomics into clinical management of the disease.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Alcoolismo/complicações , Alcoolismo/genética , Alcoolismo/patologia , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Transdução de Sinais/genética
17.
J Hepatol ; 52(4): 550-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20206398

RESUMO

BACKGROUND & AIMS: IGF signaling has a relevant role in a variety of human malignancies. We analyzed the underlying molecular mechanisms of IGF signaling activation in early hepatocellular carcinoma (HCC; BCLC class 0 or A) and assessed novel targeted therapies blocking this pathway. METHODS: An integrative molecular dissection of the axis was conducted in a cohort of 104 HCCs analyzing gene and miRNA expression, structural aberrations, and protein activation. The therapeutic potential of a selective IGF-1R inhibitor, the monoclonal antibody A12, was assessed in vitro and in a xenograft model of HCC. RESULTS: Activation of the IGF axis was observed in 21% of early HCCs. Several molecular aberrations were identified, such as overexpression of IGF2 -resulting from reactivation of fetal promoters P3 and P4-, IGFBP3 downregulation and allelic losses of IGF2R (25% of cases). A gene signature defining IGF-1R activation was developed. Overall, activation of IGF signaling in HCC was significantly associated with mTOR signaling (p=0.035) and was clearly enriched in the Proliferation subclass of the molecular classification of HCC (p=0.001). We also found an inverse correlation between IGF activation and miR-100/miR-216 levels (FDR<0.05). In vitro studies showed that A12-induced abrogation of IGF-1R activation and downstream signaling significantly decreased cell viability and proliferation. In vivo, A12 delayed tumor growth and prolonged survival, reducing proliferation rates and inducing apoptosis. CONCLUSIONS: Integrative genomic analysis showed enrichment of activation of IGF signaling in the Proliferation subclass of HCC. Effective blockage of IGF signaling with A12 provides the rationale for testing this therapy in clinical trials.


Assuntos
Carcinoma Hepatocelular , Fator de Crescimento Insulin-Like II/genética , Neoplasias Hepáticas , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Divisão Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Hepatócitos/patologia , Hepatócitos/fisiologia , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Transdução de Sinais/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Hepatol ; 51(4): 725-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19665249

RESUMO

BACKGROUND/AIMS: The success of sorafenib in the treatment of advanced hepatocellular carcinoma (HCC) has focused interest on the role of Ras signaling in this malignancy. We investigated the molecular alterations of the Ras pathway in HCC and the antineoplastic effects of sorafenib in combination with rapamycin, an inhibitor of mTOR pathway, in experimental models. METHODS: Gene expression (qRT-PCR, oligonucleotide microarray), DNA copy number changes (SNP-array), methylation of tumor suppressor genes (methylation-specific PCR) and protein activation (immunohistochemistry) were analysed in 351 samples. Anti-tumoral effects of combined therapy targeting the Ras and mTOR pathways were evaluated in cell lines and HCC xenografts. RESULTS: Different mechanisms accounted for Ras pathway activation in HCC. H-ras was up-regulated during different steps of hepatocarcinogenesis. B-raf was overexpressed in advanced tumors and its expression was associated with genomic amplification. Partial methylation of RASSF1A and NORE1A was detected in 89% and 44% of tumors respectively, and complete methylation was found in 11 and 4% of HCCs. Activation of the pathway (pERK immunostaining) was identified in 10.3% of HCC. Blockade of Ras and mTOR pathways with sorafenib and rapamycin reduced cell proliferation and induced apoptosis in cell lines. In vivo, the combination of both compounds enhanced tumor necrosis and ulceration when compared with sorafenib alone. CONCLUSIONS: Ras activation results from several molecular alterations, such as methylation of tumor suppressors and amplification of oncogenes (B-raf). Sorafenib blocks signaling and synergizes with rapamycin in vivo, preventing tumor progression. These data provide the rationale for testing this combination in clinical studies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Benzenossulfonatos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Piridinas/administração & dosagem , Sirolimo/administração & dosagem , Proteínas ras/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Dosagem de Genes/efeitos dos fármacos , Genes ras/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Niacinamida/análogos & derivados , Compostos de Fenilureia , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Quinases/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe , Serina-Treonina Quinases TOR , Transplante Heterólogo
19.
Gastroenterology ; 135(6): 1972-83, 1983.e1-11, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18929564

RESUMO

BACKGROUND & AIMS: The advent of targeted therapies in hepatocellular carcinoma (HCC) has underscored the importance of pathway characterization to identify novel molecular targets for treatment. We evaluated mTOR signaling in human HCC, as well as the antitumoral effect of a dual-level blockade of the mTOR pathway. METHODS: The mTOR pathway was assessed using integrated data from mutation analysis (direct sequencing), DNA copy number changes (SNP-array), messenger RNA levels (quantitative reverse-transcription polymerase chain reaction and gene expression microarray), and protein activation (immunostaining) in 351 human samples [HCC (n = 314) and nontumoral tissue (n = 37)]. Effects of dual blockade of mTOR signaling using a rapamycin analogue (everolimus) and an epidermal/vascular endothelial growth factor receptor inhibitor (AEE788) were evaluated in liver cancer cell lines and in a xenograft model. RESULTS: Aberrant mTOR signaling (p-RPS6) was present in half of the cases, associated with insulin-like growth factor pathway activation, epidermal growth factor up-regulation, and PTEN dysregulation. PTEN and PI3KCA-B mutations were rare events. Chromosomal gains in RICTOR (25% of patients) and positive p-RPS6 staining correlated with recurrence. RICTOR-specific siRNA down-regulation reduced tumor cell viability in vitro. Blockage of mTOR signaling with everolimus in vitro and in a xenograft model decelerated tumor growth and increased survival. This effect was enhanced in vivo after epidermal growth factor blockade. CONCLUSIONS: MTOR signaling has a critical role in the pathogenesis of HCC, with evidence for the role of RICTOR in hepato-oncogenesis. MTOR blockade with everolimus is effective in vivo. These findings establish a rationale for targeting the mTOR pathway in clinical trials in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Proteínas Quinases/genética , RNA Neoplásico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases , Proteínas Quinases/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Serina-Treonina Quinases TOR
20.
Hepatol Commun ; 3(11): 1496-1509, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31701073

RESUMO

Each year, more than 25,000 people succumb to liver cancer in the United States, and this neoplasm represents the second cause of cancer-related death globally. R-spondins (RSPOs) are secreted regulators of Wnt signaling that function in development and promote tissue stem cell renewal. In cancer, RSPOs 2 and 3 are oncogenes first identified by insertional mutagenesis screens in tumors induced by mouse mammary tumor virus and by transposon mutagenesis in the colonic epithelium of rodents. RSPO2 has been reported to be activated by chromosomal rearrangements in colorectal cancer and overexpressed in a subset of hepatocellular carcinoma. Using human liver tumor gene expression data, we first discovered that a subset of liver cancers were characterized by high levels of RSPO2 in contrast to low levels in adjacent nontumor tissue. To determine if RSPOs are capable of inducing liver tumors, we used an in vivo model from which we found that overexpression of RSPO2 in the liver promoted Wnt signaling, hepatomegaly, and enhanced liver tumor formation when combined with loss of transformation-related protein 53 (Trp53). Moreover, the Hippo/yes-associated protein (Yap) pathway has been implicated in many human cancers, influencing cell survival. Histologic and gene expression studies showed activation of Wnt/ß-catenin and Hippo/Yap pathways following RSPO2 overexpression. We demonstrate that knockdown of Yap1 leads to reduced tumor penetrance following RSPO2 overexpression in the context of loss of Trp53. Conclusion: RSPO2 overexpression leads to tumor formation in the mouse liver in a Hippo/Yap-dependent manner. Overall, our results suggest a role for Yap in the initiation and progression of liver tumors and uncover a novel pathway activated in RSPO2-induced malignancies. We show that RSPO2 promotes liver tumor formation in vivo and in vitro and that RSPO2's oncogenic activity requires Hippo/Yap activation in hepatocytes. Both RSPO2 and YAP1 are suggested to represent novel druggable targets in Wnt-driven tumors of the liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA