Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(20): 203603, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29864323

RESUMO

We present the generation and detection of squeezed light in the 2 µm wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity. The experiment uses a frequency stabilized 1984 nm thulium fiber laser, and squeezing is detected using balanced homodyne detection with extended InGaAs photodiodes. We have measured 4.0±0.1 dB of squeezing and 10.5±0.5 dB of antisqueezing relative to the shot noise level in the audio frequency band, limited by photodiode quantum efficiency. The inferred squeezing level directly after the optical parametric oscillator, after accounting for known losses and phase noise, is 10.7 dB.

2.
Appl Opt ; 56(8): 2353-2358, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28375282

RESUMO

We present a new technique for the fine alignment sensing of optical interferometers. Unlike conventional wavefront sensing systems, which use multielement photodiodes, this approach works with a single-element photodiode, in combination with a spatial light modulator (SLM) and digitally enhanced heterodyne interferometry. As all signals pass through a single photodetection and analog path, the technique exhibits high common-mode rejection to low frequency errors present in conventional systems. By changing the modulation pattern on the SLM, the technique can also be extended to sensing higher-order wavefront errors. In this paper, we demonstrate the technique experimentally and compare performance with a conventional heterodyne wavefront sensing system. This may improve and simplify alignment systems in space-based interferometers such as the planned LISA gravitational wave detector and provide a way to optimize the power in laser cavities not possible with the traditional segmented diode approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA