Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33046497

RESUMO

New antibiotics are urgently needed to address the mounting resistance challenge. In early drug discovery, one of the bottlenecks is the elucidation of targets and mechanisms. To accelerate antibiotic research, we provide a proteomic approach for the rapid classification of compounds into those with precedented and unprecedented modes of action. We established a proteomic response library of Bacillus subtilis covering 91 antibiotics and comparator compounds, and a mathematical approach was developed to aid data analysis. Comparison of proteomic responses (CoPR) allows the rapid identification of antibiotics with dual mechanisms of action as shown for atypical tetracyclines. It also aids in generating hypotheses on mechanisms of action as presented for salvarsan (arsphenamine) and the antirheumatic agent auranofin, which is under consideration for repurposing. Proteomic profiling also provides insights into the impact of antibiotics on bacterial physiology through analysis of marker proteins indicative of the impairment of cellular processes and structures. As demonstrated for trans-translation, a promising target not yet exploited clinically, proteomic profiling supports chemical biology approaches to investigating bacterial physiology.


Assuntos
Antibacterianos , Proteômica , Antibacterianos/farmacologia , Bacillus subtilis , Proteínas de Bactérias/genética , Tetraciclinas
2.
Artigo em Inglês | MEDLINE | ID: mdl-30917982

RESUMO

Staphylococcus aureus is a leading cause of infection in the United States, and due to the rapid development of resistance, new antibiotics are constantly needed. trans-Translation is a particularly promising antibiotic target because it is conserved in many bacterial species, is critical for bacterial survival, and is unique among prokaryotes. We have investigated the potential of KKL-40, a small-molecule inhibitor of trans-translation, and find that it inhibits both methicillin-susceptible and methicillin-resistant strains of S. aureus KKL-40 is also effective against Gram-positive pathogens, including a vancomycin-resistant strain of Enterococcus faecalis, Bacillus subtilis, and Streptococcus pyogenes, although its performance with Gram-negative pathogens is mixed. KKL-40 synergistically interacts with the human antimicrobial peptide LL-37, a member of the cathelicidin family, to inhibit S. aureus but not other antibiotics tested, including daptomycin, kanamycin, or erythromycin. KKL-40 is not cytotoxic to HeLa cells at concentrations that are 100-fold higher than the effective MIC. We also find that S. aureus develops minimal resistance to KKL-40 even after multiday passage at sublethal concentrations. Therefore, trans-translation inhibitors could be a particularly promising drug target against S. aureus, not only because of their ability to inhibit bacterial growth but also because of their potential to simultaneously render S. aureus more susceptible to host antimicrobial peptides.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Células HeLa , Humanos , Resistência a Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia , Catelicidinas
3.
Artigo em Inglês | MEDLINE | ID: mdl-28760903

RESUMO

Bacillus anthracis, the causative agent of anthrax, remains a significant threat to humans, including potential use in bioterrorism and biowarfare. The capacity to engineer strains with increased pathogenicity coupled with the ease of disseminating lethal doses of B. anthracis spores makes it necessary to identify chemical agents that target and kill spores. Here, we demonstrate that a tetrazole-based trans-translation inhibitor, KKL-55, is bactericidal against vegetative cells of B. anthracis in culture. Using a fluorescent analog, we show that this class of compounds colocalizes with developing endospores and bind purified spores in vitro KKL-55 was effective against spores at concentrations close to its MIC for vegetative cells. Spore germination was inhibited at 1.2× MIC, and spores were killed at 2× MIC. In contrast, ciprofloxacin killed germinants at concentrations close to its MIC but did not prevent germination even at 32× MIC. Because toxins are released by germinants, macrophages infected by B. anthracis spores are killed early in the germination process. At ≥2× MIC, KKL-55 protected macrophages from death after infection with B. anthracis spores. Ciprofloxacin required concentrations of ≥8× MIC to exhibit a similar effect. Taken together, these data indicate that KKL-55 and related tetrazoles are good lead candidates for therapeutics targeting B. anthracis spores and suggest that there is an early requirement for trans-translation in germinating spores.


Assuntos
Antraz/prevenção & controle , Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Benzamidas/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Esporos Bacterianos/efeitos dos fármacos , Tetrazóis/farmacologia , Animais , Linhagem Celular , Ciprofloxacina/farmacologia , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7
4.
Antimicrob Agents Chemother ; 60(6): 3276-82, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26953190

RESUMO

Bacteria require at least one pathway to rescue ribosomes stalled at the ends of mRNAs. The primary pathway for ribosome rescue is trans-translation, which is conserved in >99% of sequenced bacterial genomes. Some species also have backup systems, such as ArfA or ArfB, which can rescue ribosomes in the absence of sufficient trans-translation activity. Small-molecule inhibitors of ribosome rescue have broad-spectrum antimicrobial activity against bacteria grown in liquid culture. These compounds were tested against the tier 1 select agent Francisella tularensis to determine if they can limit bacterial proliferation during infection of eukaryotic cells. The inhibitors KKL-10 and KKL-40 exhibited exceptional antimicrobial activity against both attenuated and fully virulent strains of F. tularensis in vitro and during ex vivo infection. Addition of KKL-10 or KKL-40 to macrophages or liver cells at any time after infection by F. tularensis prevented further bacterial proliferation. When macrophages were stimulated with the proinflammatory cytokine gamma interferon before being infected by F. tularensis, addition of KKL-10 or KKL-40 reduced intracellular bacteria by >99%, indicating that the combination of cytokine-induced stress and a nonfunctional ribosome rescue pathway is fatal to F. tularensis Neither KKL-10 nor KKL-40 was cytotoxic to eukaryotic cells in culture. These results demonstrate that ribosome rescue is required for F. tularensis growth at all stages of its infection cycle and suggest that KKL-10 and KKL-40 are good lead compounds for antibiotic development.


Assuntos
Antibacterianos/farmacologia , Francisella tularensis/efeitos dos fármacos , Oxidiazóis/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Interferon gama/farmacologia , Fígado/microbiologia , Macrófagos/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Virulência/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 110(25): 10282-7, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23733947

RESUMO

The trans-translation pathway for protein tagging and ribosome release plays a critical role for viability and virulence in a wide range of pathogens but is not found in animals. To explore the use of trans-translation as a target for antibiotic development, a high-throughput screen and secondary screening assays were used to identify small molecule inhibitors of the pathway. Compounds that inhibited protein tagging and proteolysis of tagged proteins were recovered from the screen. One of the most active compounds, KKL-35, inhibited the trans-translation tagging reaction with an IC50 = 0.9 µM. KKL-35 and other compounds identified in the screen exhibited broad-spectrum antibiotic activity, validating trans-translation as a target for drug development. This unique target could play a key role in combating strains of pathogenic bacteria that are resistant to existing antibiotics.


Assuntos
Antibacterianos/biossíntese , Escherichia coli/genética , Biossíntese de Proteínas/fisiologia , RNA Bacteriano/genética , Bibliotecas de Moléculas Pequenas , Antibacterianos/farmacologia , Bioensaio , Códon de Terminação/genética , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Biblioteca Gênica , Humanos , Luciferases/genética , Conformação de Ácido Nucleico , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribossomos/genética
6.
Antimicrob Agents Chemother ; 58(9): 5500-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001303

RESUMO

Noncoding small RNAs (sRNAs) act in conjunction with the RNA chaperone Hfq to regulate gene expression in bacteria. Because Hfq is required for virulence in several bacterial pathogens, the Hfq-sRNA system is an attractive target for antibiotic development. A reporter strain in which the expression of yellow fluorescent protein (YFP) is controlled by Hfq-sRNA was engineered to identify inhibitors of this system. A reporter that is targeted by Hfq in conjunction with the RybB sRNA was used in a genetic screen to identify inhibitors from a library of cyclic peptides produced in Escherichia coli using split-intein circular ligation of peptides and proteins (SICLOPPS), an intein-based technology. One cyclic peptide identified in this screen, RI20, inhibited Hfq-mediated repression of gene expression in conjunction with both RybB and an unrelated sRNA, MicF. Gel mobility shift assays showed that RI20 inhibited binding of Hfq to RybB and MicF with similar Ki values. These data suggest that RI20 inhibits Hfq activity by blocking interactions with sRNAs and provide a paradigm for inhibiting virulence genes in Gram-negative pathogens.


Assuntos
Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Pequeno RNA não Traduzido/genética , Bioensaio/métodos , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Ligação Proteica/genética , RNA Bacteriano/genética , Transdução de Sinais/genética , Virulência/genética
7.
Antimicrob Agents Chemother ; 57(1): 356-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23114783

RESUMO

We report an improved, nonhazardous, high-throughput assay for in vitro quantification of antimalarial drug inhibition of ß-hematin (hemozoin) crystallization performed under conditions that are more physiological relative to previous assays. The assay uses the differential detergent solubility of crystalline and noncrystalline forms of heme and is optimized via the use of lipid catalyst. Using this assay, we quantify the effect of pH on the crystal growth-inhibitory activities of current quinoline antimalarials, evaluate the catalytic efficiencies of different lipids, and test for a possible correlation between hemozoin inhibition by drugs versus their antiplasmodial activity. Consistent with several previous reports, we found a good correlation between hemozoin inhibition potency versus cytostatic antiplasmodial potency (50% inhibitory concentration) for a series of chloroquine (CQ) analogues. However, we found no correlation between hemozoin inhibition potency and cytocidal antiplasmodial potency (50% lethal dose) for the same drugs, suggesting that cellular targets for these two layers of 4-aminoquinoline drug activity differ. This important concept is also explored further for QN and its stereoisomers in the accompanying paper (A. P. Gorka, K. S. Sherlach, A. C. de Dios, and P. D. Roepe, Antimicrob. Agents Chemother. 57:365-374, 2013).


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Citostáticos/farmacologia , Citotoxinas/farmacologia , Eritrócitos/efeitos dos fármacos , Heme/química , Hemeproteínas/química , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/metabolismo , Células Cultivadas , Cloroquina/análogos & derivados , Cloroquina/metabolismo , Cristalização , Citostáticos/metabolismo , Citotoxinas/metabolismo , Eritrócitos/parasitologia , Hemeproteínas/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Cinética , Fosfolipídeos/química , Fosfolipídeos/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo
8.
mBio ; 14(5): e0146123, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681945

RESUMO

IMPORTANCE: Elongation factor thermo-unstable (EF-Tu) is a universally conserved translation factor that mediates productive interactions between tRNAs and the ribosome. In bacteria, EF-Tu also delivers transfer-messenger RNA (tmRNA)-SmpB to the ribosome during trans-translation. We report the first small molecule, KKL-55, that specifically inhibits EF-Tu activity in trans-translation without affecting its activity in normal translation. KKL-55 has broad-spectrum antibiotic activity, suggesting that compounds targeted to the tmRNA-binding interface of EF-Tu could be developed into new antibiotics to treat drug-resistant infections.


Assuntos
Fator Tu de Elongação de Peptídeos , Fatores de Alongamento de Peptídeos , Fator Tu de Elongação de Peptídeos/genética , Fatores de Alongamento de Peptídeos/genética , Antibacterianos/farmacologia , Proteínas de Ligação a RNA/genética , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA de Transferência/metabolismo
9.
Antimicrob Agents Chemother ; 56(4): 1854-61, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22252821

RESUMO

The ClpXP protease is a critical bacterial intracellular protease that regulates protein turnover in many bacterial species. Here we identified a pharmacological inhibitor of the ClpXP protease, F2, and evaluated its action in Bacillus anthracis and Staphylococcus aureus. We found that F2 exhibited synergistic antimicrobial activity with cathelicidin antimicrobial peptides and antibiotics that target the cell well and/or cell membrane, such as penicillin and daptomycin, in B. anthracis and drug-resistant strains of S. aureus. ClpXP inhibition represents a novel therapeutic strategy to simultaneously sensitize pathogenic bacteria to host defenses and pharmaceutical antibiotics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Endopeptidase Clp/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/genética , Membrana Celular/metabolismo , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Dados de Sequência Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tetrazóis/farmacologia , Catelicidinas
10.
J Nat Prod ; 74(10): 2174-80, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21995542

RESUMO

Investigation of extracts from the plant Athroisma proteiforme (Humbert) Mattf. (Asteraceae) for antimalarial activity led to the isolation of the five new sesquiterpene lactones 1-5 together with centaureidin (6). The structures of the new compounds were deduced from analyses of physical and spectroscopic data, and the absolute configuration of compound 1 was confirmed by an X-ray crystallographic study. Athrolides C (3) and D (4) both showed antiplasmodial activities with IC50 values of 6.6 (3) and 7.2 µM (4) against the HB3 strain and 5.5 (3) and 4.2 µM (4) against the Dd2 strain of the malarial parasite Plasmodium falciparum. The isolates 1-6 also showed antiproliferative activity against A2780 human ovarian cancer cells, with IC50 values ranging from 0.4 to 2.5 µM.


Assuntos
Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Flavonoides/farmacologia , Lactonas/isolamento & purificação , Lactonas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Antimaláricos/química , Antineoplásicos Fitogênicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Concentração Inibidora 50 , Lactonas/química , Madagáscar , Estrutura Molecular , Sesquiterpenos/química , Árvores
11.
Phytochemistry ; 181: 112545, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217722

RESUMO

Alarming rate of resistance to the existing antibiotics exhibits the importance of developing new antibiotic molecules from relatively under explored sources as well as implementing alternative approaches like antibiotic adjuvants. Six previously undescribed fungal polyketides, kaneoheoic acids A-F (1-6) were isolated from a fungal strain Fusarium sp. FM701 which was collected from a muddy sample of Hawaiian beach. The structures of these six compounds were elucidated by spectroscopic interpretation, including HRESIMS and NMR, and electronic circular dichroism (ECD) analysis. All six compounds that were inactive when tested alone showed significant antibacterial activity against Staphylococcus aureus and Bacillus subtilis, in the range of 10-80 µg/mL when assayed in combination with either chloramphenicol (half of the MIC, 1 µg/mL), an FDA approved antibiotic or disulfiram (6 µg/mL), an established antibiotic adjuvant that augmented the activity of antibiotics.


Assuntos
Fusarium , Policetídeos , Antibacterianos/farmacologia , Fungos , Havaí , Testes de Sensibilidade Microbiana , Policetídeos/farmacologia
12.
Nat Biomed Eng ; 5(5): 467-480, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33390588

RESUMO

Precision antimicrobials aim to kill pathogens without damaging commensal bacteria in the host, and thereby cure disease without antibiotic-associated dysbiosis. Here we report the de novo design of a synthetic host defence peptide that targets a specific pathogen by mimicking key molecular features of the pathogen's channel-forming membrane proteins. By exploiting physical and structural vulnerabilities within the pathogen's cellular envelope, we designed a peptide sequence that undergoes instructed tryptophan-zippered assembly within the mycolic acid-rich outer membrane of Mycobacterium tuberculosis to specifically kill the pathogen without collateral toxicity towards lung commensal bacteria or host tissue. These mycomembrane-templated assemblies elicit rapid mycobactericidal activity and enhance the potency of antibiotics by improving their otherwise poor diffusion across the rigid M. tuberculosis envelope with respect to agents that exploit transmembrane protein channels for antimycobacterial activity. This biomimetic strategy may aid the design of other narrow-spectrum antimicrobial peptides.


Assuntos
Antibacterianos/farmacologia , Proteínas de Membrana/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Mimetismo Molecular , Peptídeos/genética
13.
Nat Commun ; 12(1): 1799, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741965

RESUMO

Bacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


Assuntos
Neisseria gonorrhoeae/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Ribossomos/efeitos dos fármacos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Células CACO-2 , Feminino , Gonorreia/microbiologia , Gonorreia/prevenção & controle , Humanos , Camundongos , Neisseria gonorrhoeae/genética , Biossíntese de Proteínas/genética , Inibidores da Síntese de Proteínas/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
14.
Bioorg Med Chem ; 17(7): 2871-6, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19282186

RESUMO

Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of the bark of Scutia myrtina led to the isolation of three new anthrone-anthraquinones, scutianthraquinones A, B and C (1-3), one new bisanthrone-anthraquinone, scutianthraquinone D (4), and the known anthraquinone, aloesaponarin I (5). The structures of all compounds were determined using a combination of 1D and 2D NMR experiments, including COSY, TOCSY, HSQC, HMBC, and ROESY sequences, and mass spectrometry. All the isolated compounds were tested against the A2780 human ovarian cancer cell line for antiproliferative activities, and against the chloroquine-resistant Plasmodium falciparum strains Dd2 and FCM29 for antiplasmodial activities. Compounds 1, 2 and 4 showed weak antiproliferative activities against the A2780 ovarian cancer cell line, while compounds 1-4 exhibited moderate antiplasmodial activities against P. falciparum Dd2 and compounds 1, 2, and 4 exhibited moderate antiplasmodial activities against P. falciparum FCM29.


Assuntos
Antraquinonas/química , Antimaláricos/química , Antineoplásicos Fitogênicos/química , Rhamnaceae/química , Animais , Antraquinonas/isolamento & purificação , Antraquinonas/farmacologia , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Humanos , Madagáscar , Casca de Planta/química , Extratos Vegetais/química , Plasmodium falciparum/efeitos dos fármacos
15.
J Med Chem ; 51(12): 3466-79, 2008 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-18512900

RESUMO

Using predictions from heme-quinoline antimalarial complex structures, previous modifications of chloroquine (CQ), and hypotheses for chloroquine resistance (CQR), we synthesize and assay CQ analogues that test structure-function principles. We vary side chain length for both monoethyl and diethyl 4-N CQ derivatives. We alter the pKa of the quinolyl N by introducing alkylthio or alkoxy substituents into the 4 position and vary side chain length for these analogues. We introduce an additional titratable amino group to the side chain of 4-O analogues with promising CQR strain selectivity and increase activity while retaining selectivity. We solve atomic resolution structures for complexes formed between representative 4-N, 4-S, and 4-O derivatives vs mu-oxo dimeric heme, measure binding constants for monomeric vs dimeric heme, and quantify hemozoin (Hz) formation inhibition in vitro. The data provide additional insight for the design of CQ analogues with improved activity vs CQR malaria.


Assuntos
Antimaláricos/síntese química , Cloroquina/análogos & derivados , Cloroquina/síntese química , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Benzotiazóis , Cloroquina/farmacologia , Diaminas , Corantes Fluorescentes , Substâncias Intercalantes , Modelos Moleculares , Compostos Orgânicos , Testes de Sensibilidade Parasitária , Quinolinas , Relação Estrutura-Atividade
16.
Inorg Chem ; 47(13): 6077-81, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18533646

RESUMO

Nuclear magnetic resonance (NMR) measurements of magnetic susceptibility have been utilized to study the equilibrium between two forms (high-spin monomer vs the antiferromagnetically coupled mu-oxo dimer) of ferriprotoporphyrin(IX) as a function of pH. The pH dependence of this equilibrium is significantly altered by the addition of either chloroquine or quinine. Chloroquine promotes the mu-oxo dimer whereas quinine promotes the monomer.


Assuntos
Heme/química , Hemina/química , Cloroquina , Dimerização , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Magnetismo , Quinina
17.
ACS Infect Dis ; 3(9): 634-644, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28762275

RESUMO

The emergence of Mycobacterium tuberculosis (MTB) strains that are resistant to most or all available antibiotics has created a severe problem for treating tuberculosis and has spurred a quest for new antibiotic targets. Here, we demonstrate that trans-translation is essential for growth of MTB and is a viable target for development of antituberculosis drugs. We also show that an inhibitor of trans-translation, KKL-35, is bactericidal against MTB under both aerobic and anoxic conditions. Biochemical experiments show that this compound targets helix 89 of the 23S rRNA. In silico molecular docking predicts a binding pocket for KKL-35 adjacent to the peptidyl-transfer center in a region not targeted by conventional antibiotics. Computational solvent mapping suggests that this pocket is a druggable hot spot for small molecule binding. Collectively, our findings reveal a new target for antituberculosis drug development and provide critical insight on the mechanism of antibacterial action for KKL-35 and related 1,3,4-oxadiazole benzamides.


Assuntos
Antituberculosos/farmacologia , Benzamidas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/farmacologia , RNA Ribossômico 23S/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antituberculosos/química , Benzamidas/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/genética , Oxidiazóis/química , RNA Ribossômico 23S/química , Bibliotecas de Moléculas Pequenas/química
18.
J Inorg Biochem ; 105(3): 467-75, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20864177

RESUMO

Quinoline antimalarial drugs bind both monomeric and dimeric forms of free heme, with distinct preferences depending on the chemical environment. Under biological conditions, chloroquine (CQ) appears to prefer to bind to µ-oxo dimeric heme, while quinine (QN) preferentially binds monomer. To further explore this important distinction, we study three newly synthesized and several commercially available QN analogues lacking various functional groups. We find that removal of the QN hydroxyl lowers heme affinity, hemozoin (Hz) inhibition efficiency, and antiplasmodial activity. Elimination of the rigid quinuclidyl ring has similar effects, but elimination of either the vinyl or methoxy group does not. Replacing the quinuclidyl N with a less rigid tertiary aliphatic N only partially restores activity. To further study these trends, we probe drug-heme interactions via NMR studies with both Fe and Zn protoporphyrin IX (FPIX, ZnPIX) for QN, dehydroxyQN (DHQN), dequinuclidylQN (DQQN), and deamino-dequinuclidylQN (DADQQN). Magnetic susceptibility measurements in the presence of FPIX demonstrate that these compounds differentially perturb FPIX monomer-dimer equilibrium. We also isolate the QN-FPIX complex formed under mild aqueous conditions and analyze it by mass spectrometry, as well as fluorescence, vibrational, and solid-state NMR spectroscopies. The data elucidate key features of QN pharmacology and allow us to propose a refined model for the preferred binding of QN to monomeric FPIX under biologically relevant conditions. With this model in hand, we also propose how QN, CQ, and amodiaquine (AQ) differ in their ability to inhibit Hz formation.


Assuntos
Antimaláricos/química , Hemina/química , Radical Hidroxila/química , Nitrogênio/química , Quinina/química , Amodiaquina/química , Antimaláricos/síntese química , Antimaláricos/farmacologia , Cloroquina/química , Dimerização , Relação Dose-Resposta a Droga , Hemeproteínas/química , Radical Hidroxila/farmacologia , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Malária Falciparum/tratamento farmacológico , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Nitrogênio/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinina/análogos & derivados , Quinina/síntese química , Quinina/farmacologia
19.
Front Microbiol ; 6: 498, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042115
20.
J Inorg Biochem ; 103(5): 745-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19223262

RESUMO

Proton nuclear magnetic resonance relaxation times were measured for the protons of micelles formed by the detergents sodium dodecyl sulfate, dodecyltrimethyl ammonium bromide, and polyethylene glycol sorbitan monolaureate in the presence of ferriprotoporphyrin IX and the antimalarial drugs chloroquine, 7-chloro-4-quinolyl 4-N,N-diethylaminobutyl sulfide, and primaquine. Diffusion coefficients were extracted from pulsed gradient NMR experiments to evaluate the degree of association of these drugs with the detergent micelles. Results indicate that at low or neutral pH when the quinolyl N is protonated, chloroquine does not associate with neutral or cationic detergent micelles. For this reason, chloroquine's interaction with heme perturbs the partitioning of heme between the aqueous medium and detergent micelles.


Assuntos
Antimaláricos/química , Detergentes/química , Heme/química , Espectroscopia de Ressonância Magnética/métodos , Micelas , Concentração de Íons de Hidrogênio , Estrutura Molecular , Primaquina/química , Compostos de Amônio Quaternário/química , Dodecilsulfato de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA