Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 157(4): 979-991, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813617

RESUMO

The reprogramming of parental methylomes is essential for embryonic development. In mammals, paternal 5-methylcytosines (5mCs) have been proposed to be actively converted to oxidized bases. These paternal oxidized bases and maternal 5mCs are believed to be passively diluted by cell divisions. By generating single-base resolution, allele-specific DNA methylomes from mouse gametes, early embryos, and primordial germ cell (PGC), as well as single-base-resolution maps of oxidized cytosine bases for early embryos, we report the existence of 5hmC and 5fC in both maternal and paternal genomes and find that 5mC or its oxidized derivatives, at the majority of demethylated CpGs, are converted to unmodified cytosines independent of passive dilution from gametes to four-cell embryos. Therefore, we conclude that paternal methylome and at least a significant proportion of maternal methylome go through active demethylation during embryonic development. Additionally, all the known imprinting control regions (ICRs) were classified into germ-line or somatic ICRs.


Assuntos
Metilação de DNA , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , 5-Metilcitosina/metabolismo , Animais , Ilhas de CpG , Citosina/análogos & derivados , Citosina/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Regiões Promotoras Genéticas
2.
Sci Rep ; 7(1): 14131, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074850

RESUMO

Bisphenol A (BPA) is widely used in the manufacture of plastics and epoxy resins and is prevalent in the aquatic environment. BPA disrupts endocrine pathways in fish, but the long-term developmental implications are unknown. We demonstrate that BPA deposition in the eggs of rainbow trout (Oncorhynchus mykiss), an ecologically and economically important species of fish, reprograms liver metabolism in the offspring and alters the developmental growth trajectory in two generations. Specifically, BPA reduces growth during early development, followed by a catch-up growth post-juveniles. More importantly, we observed a developmental shift in the liver transcriptome, including an increased propensity for protein breakdown during early life stages to lipid and cholesterol synthesis post- juveniles. The liver molecular responses corresponded with the transient growth phenotypes observed in the F1 generation, and this was also evident in the F2 generation. Altogether, maternal and/or ancestral embryonic exposure to BPA affects liver metabolism leading to development-distinct effects on growth, underscoring the need for novel risk assessment strategies for this chemical in the aquatic environment. This is particularly applicable to migratory species, such as salmon, where distinct temporal changes in growth and physiology during development are critical for their spawning success.


Assuntos
Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/metabolismo , Óvulo/efeitos dos fármacos , Fenóis/toxicidade , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Óvulo/metabolismo , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA