Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(1): e2300494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853660

RESUMO

Favipiravir is currently approved for the treatment of the influenza virus and has shown encouraging results in terms of antiviral capacity in clinical studies against severe acute respiratory syndrome coronavirus 2. Favipiravir is a prodrug, where its favipiravir-ribofuranosyl-5B-triphosphate metabolite is capable of blocking RNA replication of the virus. However, the antiviral efficiency of favipiravir is limited by two factors: (i) low accumulation in plasma and rapid excretion/elimination post-administration and (ii) low conversion rate into the active metabolite. To tackle these problems, herein, we have designed new favipiravir analogues focusing on the replacement of the fluorine atom at the 6-position by halogen or hydrogen atoms and 3-O-functionalization with labile groups. The first type of functionalization seeks to increase the antiviral activity because of the better ability of the keto-tautomer as a function of the halogen, and it is hypothesized that the keto-tautomer tends to promote the formation of the ribofuranosyl-5B-triphosphate (RTP) metabolite. Meanwhile, the second type of functionalization seeks to promote lipophilicity and increase accumulation in cells. From the in vitro antiviral activity against two coronavirus models (bovine and human 229E), it was identified that the replacement did not improve the antiviral activity against both the models, which seems to be attributable to the low water solubility of these new 6-functionalized analogues. Meanwhile, with 3-O-functionalization, acetylation provided the most active compounds with higher half-maximal inhibitory concentration and selectivity than favipiravir, whereas benzylation/methanosulfonation yielded the least active compounds. In summary, acetylation is found to be a convenient functionalization to enhance the antiviral profile of favipiravir.


Assuntos
Amidas , Antivirais , Animais , Bovinos , Humanos , Antivirais/farmacologia , Acetilação , Relação Estrutura-Atividade , Amidas/farmacologia , Halogênios
2.
J Org Chem ; 88(15): 10735-10752, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37452781

RESUMO

Favipiravir is an important selective antiviral against RNA-based viruses, and currently, it is being repurposed as a potential drug for the treatment of COVID-19. This type of chemical system presents different carboxamide-rotameric and hydroxyl-tautomeric states, which could be essential for interpreting its selective antiviral activity. Herein, the tautomeric 3-hydroxypyrazine/3-pyrazinone pair of favipiravir and its 6-substituted analogues, 6-Cl, 6-Br, 6-I, and 6-H, were fully investigated in solution and in the solid state through ultraviolet-visible, 1H nuclear magnetic resonance, infrared spectroscopy, and X-ray diffraction techniques. Also, a study of the gas phase was performed using density functional theory calculations. In general, the keto-enol balance in these 3-hydroxy-2-pyrazinecarboxamides is finely modulated by external and internal electrical variations via changes in solvent polarity or by replacement of substituents at position 6. The enol tautomer was prevalent in an apolar environment, whereas an increase in the level of the keto tautomer was favored by an increase in solvent polarity and, even moreso, with a strong hydrogen-donor solvent. Keto tautomerization was favored either in solution or in the solid state with a decrease in 6-substituent electronegativity as follows: H ≫ I ≈ Br > Cl ≥ F. Specific rotameric states based on carboxamide, "cisoide" and "transoide", were identified for the enol and keto tautomer, respectively; their rotamerism is dependent on the tautomerism and not the aggregation state.


Assuntos
COVID-19 , Humanos , Solventes/química , Amidas , Pirazinas
3.
Org Biomol Chem ; 21(17): 3660-3668, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067256

RESUMO

Favipiravir is an important selective antiviral that emerged as an alternative against COVID-19 during the pandemic. Its synthesis has gained great interest and the conventional strategies proceed through multiple-step protocols (6-7 reaction steps), which involve, in addition, several drawbacks with global yields, lower than 34%. Herein, a simple, economical, eco-friendly and scalable (1 g) one-step protocol for the synthesis of favipiravir from the direct fluorination of the available 3-hydroxy-2-pyrazinecarboxamide with Selectfluor® is reported. The reaction proceeds easily in BF4-BMIM through a simple operational work-up, affording the favipiravir with a yield of 50% without the need of a special catalyst/additive. The key point of the present strategy was the use of the ionic liquid of BF4-BMIM, which helps to minimize the several chemical limitations derived from 3-hydroxy-2-pyrazinecarboxamide as a substrate for the direct Selectfluor-mediated fluorination. All these chemical reactivity aspects are also discussed in detail.


Assuntos
COVID-19 , Líquidos Iônicos , Humanos , Pirazinas
4.
Int Ophthalmol ; 43(2): 677-695, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35962295

RESUMO

PURPOSE: Prostaglandin analogs (PGAs) are first-line treatments for ocular hypertension (OHT) and open-angle glaucoma (OAG). However, frequent side effects and high costs hinder patient's compliance resulting in disease progression. Evidence suggests selective laser trabeculoplasty (SLT) may be considered a first-line treatment for OHT and OAG due to its safety profile, minor side effects, and reduced costs. Considering that PGAs and SLT share action mechanisms, it is hypothesized that previous PGA therapy may affect subsequent SLT efficacy. Therefore, we analyzed if PGAs reduce SLT efficacy. METHODS: An evidence-based review was performed to assess the safety and efficacy of SLT in patients previously treated with PGAs. For this purpose, we performed an extensive literature search using the National Library of Medicine's PubMed and Google Scholar database for all English language articles published until May 2021. RESULTS: There is evidence of non-superiority of PGAs therapy versus SLT for OHT and OAG. A multicenter, randomized, observer-masked clinical trial (RCT) of untreated OHT and OAG patients concluded that SLT should be offered as the first-line treatment for these patients. This study was supported by a meta-analysis of RCTs, comparing SLT efficacy versus antiglaucoma drugs only, with the advantage of an SLT lower rate of adverse effects. CONCLUSIONS: Cost-effectiveness, patient compliance, and antiglaucoma drugs' side effects, including higher surgical failure, favor consideration of SLT as first-line therapy for OAG and OHT. Furthermore, SLT efficacy does not seem to be affected by prior PGA administration; however, larger cohort, comparative, multicenter RCTs are necessary to answer this question.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Terapia a Laser , Hipertensão Ocular , Trabeculectomia , Humanos , Trabeculectomia/métodos , Pressão Intraocular , Agentes Antiglaucoma , Anti-Hipertensivos/uso terapêutico , Glaucoma/cirurgia , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/cirurgia , Prostaglandinas Sintéticas/uso terapêutico , Terapia a Laser/métodos , Lasers , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
5.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557996

RESUMO

Rhipicephalus microplus, the "common cattle tick", is the most important ectoparasite in livestock worldwide due to the economic and health losses it produces. This tick is a vector for pathogens of several tick-borne diseases. In Latin American countries, damages reach approximately USD 500 million annually due to tick infections, as well as tick-borne diseases. Currently, resistant populations for every chemical group of acaricides have been reported, posing a serious problem for tick control. This study aims to find new alternatives for controlling resistant ticks with compounds derived from small synthetic organic molecules and natural origins. Using BME26 embryonic cells, we performed phenotypic screening of 44 natural extracts from 10 Mexican plants used in traditional medicine, and 33 compounds selected from our chemical collection. We found 10 extracts and 13 compounds that inhibited cell growth by 50% at 50 µg/mL and 100 µM, respectively; the dose-response profile of two of them was characterized, and these compounds were assayed in vitro against different life stages of Rhipicephalus microplus. We also performed a target-directed screening of the activity of triosephosphate isomerase, using 86 compounds selected from our chemical collection. In this collection, we found the most potent and selective inhibitor of tick triosephosphate isomerase reported until now. Two other compounds had a potent acaricidal effect in vitro using adults and larvae when compared with other acaricides such as ivermectin and Amitraz. Those compounds were also selective to the ticks compared with the cytotoxicity in mammalian cells like macrophages or bovine spermatozoids. They also had a good toxicological profile, resulting in promising acaricidal compounds for tick control in cattle raising.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Acaricidas/farmacologia , Triose-Fosfato Isomerase , Extratos Vegetais/química , Doenças dos Bovinos/parasitologia , Larva , Mamíferos
6.
Int Ophthalmol ; 42(12): 3913-3921, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35789316

RESUMO

PURPOSE: To determine the prevalence, clinical characteristics, and mechanisms of secondary glaucoma in Vogt-Koyanagi-Harada (VKH) disease. METHODS: This retrospective, longitudinal observational study analyzed the demographic data, disease stage, glaucoma development, intraocular pressure, best-corrected visual acuity, lens status, optic nerve, gonioscopy, management, and visual outcomes of VKH disease. Clinical features were used to categorize the stage of VKH disease. VKH eyes were divided into two groups, with or without glaucoma, undergoing further analysis, including statistical analysis. RESULTS: 305 eyes of 155 patients with VKH disease with a median follow-up of 22 months were included. Secondary glaucoma developed in 67 (22%) eyes, most of which (64.2%) had chronic recurrent VKH at presentation. Angle-closure was present in 55 (82.1%) of glaucoma eyes. Peripheral anterior and posterior synechiae were present in 58 (86.6%) and 51 (76.1%) eyes, respectively. Pupillary block and posterior synechiae resulted in iris bombé in 17 (25.4%) eyes with glaucoma. At the last visit, visual acuity was worse in eyes with glaucoma (p < 0.001). CONCLUSION: We found that angle-closure disease is a significant cause of secondary glaucoma in VKH. Eyes with glaucoma were more likely to present in the chronic recurrent stage of the disease.


Assuntos
Glaucoma de Ângulo Fechado , Glaucoma , Síndrome Uveomeningoencefálica , Humanos , Síndrome Uveomeningoencefálica/complicações , Síndrome Uveomeningoencefálica/diagnóstico , Síndrome Uveomeningoencefálica/epidemiologia , Glaucoma de Ângulo Fechado/diagnóstico , Glaucoma de Ângulo Fechado/epidemiologia , Glaucoma de Ângulo Fechado/etiologia , Estudos Retrospectivos , Prevalência , Glaucoma/etiologia
7.
Biochemistry ; 60(24): 1896-1908, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34096272

RESUMO

Feline immunodeficiency virus (FIV) is a veterinary infective agent for which there is currently no efficient drug available. Drugs targeting the lentivirus capsid are currently under development for the treatment of human immunodeficiency virus 1 (HIV-1). Here we describe a lead compound that interacts with the FIV capsid. This compound, 696, modulates the in vitro assembly of and stabilizes the assembled capsid protein. To decipher the mechanism of binding of this compound to the protein, we performed the first nuclear magnetic resonance (NMR) assignment of the FIV p24 capsid protein. Experimental NMR chemical shift perturbations (CSPs) observed after the addition of 696 enabled the characterization of a specific binding site for 696 on p24. This site was further analyzed by molecular modeling of the protein:compound interaction, demonstrating a strong similarity with the binding sites of existing drugs targeting the HIV-1 capsid protein. Taken together, we characterized a promising capsid-interacting compound with a low cost of synthesis, for which derivatives could lead to the development of efficient treatments for FIV infection. More generally, our strategy combining the NMR assignment of FIV p24 with NMR CSPs and molecular modeling will be useful for the analysis of future compounds targeting p24 in the quest to identify an efficient treatment for FIV.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Produtos do Gene gag/antagonistas & inibidores , Vírus da Imunodeficiência Felina/efeitos dos fármacos , Animais , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/metabolismo , Gatos , Produtos do Gene gag/metabolismo , Vírus da Imunodeficiência Felina/metabolismo , Chumbo/farmacologia , Domínios Proteicos
8.
Macromol Rapid Commun ; 42(5): e2000612, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33458894

RESUMO

The glycol alkoxysilanes, tetrakis(2-hydroxyethyl)silane (THEOS), and tris(2-hydroxyethyl)methyl silane (MeTHEOS) are water soluble derivatives of tetraethoxysilane (TEOS) and methyltriethoxysilane (MeTEOS) and precursors of the system silane-chitosan reviewed in this work. The glycol modified alkoxysilanes are obtained by transesterification reaction of TEOS or MeTEOS with ethylene glycol. The reaction evolution is monitored by 29 Si NMR. It is possible to observe the formation of the various species of glycol alkoxysilanes in equilibrium as the reaction proceeds showing that the oligomers formation is favored at longer reaction times with the final product tendency to gel keeping the complete water solubility. The glycol alkoxysilanes are synthesized at moderated reaction conditions, by using the Piers-Rubinsztajn (PR) reaction. Additionally, it is already known that THEOS is compatible with different natural polysaccharides as chitosan and the same behavior has been demonstrated in this work for MeTHEOS. Several reports refer studies regarding the system THEOS-polysaccharides to synthesize hybrid materials. The system THEOS-chitosan is known but the characterization as well as the way silane-chitosan interact has not been studied in detail. In the present report, chemical evidence of the covalent interactions THEOS- and MeTHEOS-chitosan based on NMR studies (13 C and 29 Si) are presented as intended.


Assuntos
Quitosana , Silanos , Polissacarídeos , Solubilidade , Água
9.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578888

RESUMO

Stone consolidants have been widely used to protect historical monuments. Consolidants and hydrophobic formulations based on the use of tetraethoxysilane (TEOS) and alkylalkoxysilanes as precursors have been widely applied, despite their lack of solubility in water and requirement to be applied in organic media. In the search for a "greener" alternative based on silicon that has potential use in this field, the use of tetrakis(2-hydroxyethyl)silane (THEOS) and tris(2-hydroxyethyl)methyl silane (MeTHEOS) as precursors, due their high water solubility and stability, is proposed in this paper. It is already known that THEOS and MeTHEOS possess remarkable compatibility with different natural polysaccharides. The investigated approach uses the water-soluble silanes THEOS-chitosan and MeTHEOS-chitosan as a basis for obtaining hybrid consolidants and hydrophobic formulations for the conservation of siliceous and calcareous stones. In the case of calcareous systems, their incompatibility with alkoxysilanes is known and is expected to be solved by the developed hybrid consolidant. Their application in the conservation of building stones from historical and archeological sites from Guanajuato, México was studied. The evaluation of the consolidant and hydrophobic formulation treatment was mainly conducted by determining the mechanical properties and contact angle measurements with satisfactory results in terms of the performance and compatibility with the studied stones.


Assuntos
Quitosana/química , Conservação dos Recursos Naturais , Materiais de Construção/análise , Polissacarídeos/química , Silanos/química , Interações Hidrofóbicas e Hidrofílicas
10.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652542

RESUMO

Chagas disease and Leishmaniasis are neglected endemic protozoan diseases recognized as public health problems by the World Health Organization. These diseases affect millions of people around the world however, efficient and low-cost treatments are not available. Different steroid molecules with antimicrobial and antiparasitic activity were isolated from diverse organisms (ticks, plants, fungi). These molecules have complex structures that make de novo synthesis extremely difficult. In this work, we designed new and simpler compounds with antiparasitic potential inspired in natural steroids and synthesized a series of nineteen steroidal arylideneketones and thiazolidenehydrazines. We explored their biological activity against Leishmania infantum, Leishmania amazonensis, and Trypanosoma cruzi in vitro and in vivo. We also assayed their genotoxicity and acute toxicity in vitro and in mice. The best compound, a steroidal thiosemicarbazone compound 8 (ID_1260) was active in vitro (IC50 200 nM) and in vivo (60% infection reduction at 50 mg/kg) in Leishmania and T. cruzi. It also has low toxicity in vitro and in vivo (LD50 >2000 mg/kg) and no genotoxic effects, being a promising compound for anti-trypanosomatid drug development.


Assuntos
Doença de Chagas/tratamento farmacológico , Leishmaniose/tratamento farmacológico , Esteroides/uso terapêutico , Tiossemicarbazonas/uso terapêutico , Tripanossomicidas/química , Tripanossomicidas/uso terapêutico , Animais , Desenvolvimento de Medicamentos , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Hidrazinas/farmacologia , Cetonas/síntese química , Cetonas/química , Cetonas/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania mexicana/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Testes de Sensibilidade Parasitária , Esteroides/síntese química , Esteroides/química , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Tiossemicarbazonas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
11.
Mem Inst Oswaldo Cruz ; 113(3): 153-160, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29412353

RESUMO

BACKGROUND: The current chemotherapy for Chagas disease is based on monopharmacology with low efficacy and drug tolerance. Polypharmacology is one of the strategies to overcome these limitations. OBJECTIVES: Study the anti-Trypanosoma cruzi activity of associations of benznidazole (Bnz) with three new synthetic T. cruzi-triosephosphate isomerase inhibitors, 2, 3, and 4, in order to potentiate their actions. METHODS: The in vitro effect of the drug combinations were determined constructing the corresponding isobolograms. In vivo activities were assessed using an acute murine model of Chagas disease evaluating parasitaemias, mortalities and IgG anti-T. cruzi antibodies. FINDINGS: The effect of Bnz combined with each of these compounds, on the growth of epimastigotes, indicated an additive action or a synergic action, when combining it with 2 or 3, respectively, and an antagonic action when combining it with 4. In vivo studies, for the two chosen combinations, 2 or 3 plus one fifth equivalent of Bnz, showed that Bnz can also potentiate the in vivo therapeutic effects. For both combinations a decrease in the number of trypomastigote and lower levels of anti-T. cruzi IgG-antibodies were detected, as well clear protection against death. MAIN CONCLUSIONS: These results suggest the studied combinations could be used in the treatment of Chagas disease.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Triose-Fosfato Isomerase/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Anticorpos Antiprotozoários/sangue , Combinação de Medicamentos , Sinergismo Farmacológico , Drogas em Investigação , Imunoglobulina G/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/química , Trypanosoma cruzi/imunologia
12.
Molecules ; 22(5)2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28481276

RESUMO

A series of fifty arylideneketones and thiazolidenehydrazines was evaluated against Leishmania infantum and Leishmania braziliensis. Furthermore, new simplified thiazolidenehydrazine derivatives were evaluated against Trypanosoma cruzi. The cytotoxicity of the active compounds on non-infected fibroblasts or macrophages was established in vitro to evaluate the selectivity of their anti-parasitic effects. Seven thiazolidenehydrazine derivatives and ten arylideneketones had good activity against the three parasites. The IC50 values for T. cruzi and Leishmania spp. ranged from 90 nM-25 µM. Eight compounds had multi-trypanocidal activity against T. cruzi and Leishmania spp. (the etiological agents of cutaneous and visceral forms). The selectivity of these active compounds was better than the three reference drugs: benznidazole, glucantime and miltefosine. They also had low toxicity when tested in vivo on zebrafish. Trying to understand the mechanism of action of these compounds, two possible molecular targets were investigated: triosephosphate isomerase and cruzipain. We also used a molecular stripping approach to elucidate the minimal structural requirements for their anti-T. cruzi activity.


Assuntos
Doença de Chagas/tratamento farmacológico , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/dietoterapia , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Linhagem Celular , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrazinas , Cetonas , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Camundongos , Tiazolidinas , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Peixe-Zebra
13.
Int Ophthalmol ; 36(3): 373-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26419547

RESUMO

To analyze the intraocular pressure reduction, number of anti-glaucoma medications needed, and post-operative complications of trans-scleral diode laser cyclophotocoagulation (DCPC) in patients with high-risk penetrating keratoplasty (PKP) and secondary refractory glaucoma. Prospective interventional, longitudinal, non-comparative series of cases, including 16 eyes of 15 patient's post-PKP on maximal anti-glaucoma medical therapy with intraocular pressures above 22 mmHg. All patients received 18 shots, 360° peri-limbal (avoiding the long posterior ciliary nerves and arteries at 3 and 9 o'clock positions) of trans-scleral DCPC (2000 mW, time: 2.0 s/shot). There was a 55.5 % reduction (total of 14.0 mmHg) of the mean pre-operative IOP (31.5 mmHg) after the first diode laser application (p = 0.0020). Re-treatment was required in 31.2 % of eyes over a mean period of 10.7 months. In these five eyes, the mean pre-operative IOP was 40.4 mmHg, which decreased to 15.0 mmHg post-therapy, and a mean IOP reduction of 25.4 mmHg (p = 0.0218). There was a 51.0 % reduction in the mean number of medications used after the first, and a 57.1 % reduction after a second laser application. The incidence of failure (IOP ≥ 22 mmHg or need of additional medical therapy) from initial intervention to loss of follow-up was 1.3 % per person-month. DCPC effectively reduces the intraocular pressure and the number of anti-glaucoma medications with few complications in patients after high-risk PKP and secondary glaucoma. Only, one-third of the eyes needed a second intervention to control the intraocular pressure. Post-DCPC complications were limited to phthisis bulbi and endothelial dysfunction, one eye each. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct.


Assuntos
Glaucoma/cirurgia , Ceratoplastia Penetrante/efeitos adversos , Fotocoagulação a Laser/métodos , Adolescente , Adulto , Idoso , Anti-Hipertensivos/administração & dosagem , Criança , Feminino , Glaucoma/tratamento farmacológico , Glaucoma/etiologia , Glaucoma/fisiopatologia , Humanos , Pressão Intraocular/fisiologia , Lasers Semicondutores/uso terapêutico , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/cirurgia , Estudos Prospectivos , Retratamento/estatística & dados numéricos , Adulto Jovem
14.
Antimicrob Agents Chemother ; 59(3): 1398-404, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512408

RESUMO

Although the parasitic infection Chagas' disease was described over 100 years ago, even now there are not suitable drugs. The available drugs nifurtimox and benznidazole have limited efficacies and tolerances, with proven mutagenic effects. Attempting to find appropriate drugs to deal with this problem, here we report on the development and pharmacological characterization of new amide-containing thiazoles. In the present study, we evaluated the in vitro and in vivo effects of new candidates against Trypanosoma cruzi, the etiological agent of Chagas' disease. The lead amide-containing thiazole derivative had potent in vitro activity, an absence of both in vitro mutagenic and in vivo clastogenic effects, and excellent in vitro selectivity and in vivo tolerance. The compound suppressed parasitemia in mice, modifying the anti-T. cruzi antibodies like the reference drug, benznidazole, and displayed the lowest mortality among the tested drugs. The present evidence suggests that this compound is a promising anti-T. cruzi agent surpassing the lead optimization stage in drug development and leading to a candidate for preclinical study.


Assuntos
Amidas/farmacologia , Doença de Chagas/tratamento farmacológico , Tiazóis/farmacologia , Tripanossomicidas/farmacologia , Amidas/síntese química , Animais , Doença de Chagas/patologia , Descoberta de Drogas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tiazóis/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento
15.
Molecules ; 20(8): 14595-610, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26274947

RESUMO

The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.


Assuntos
Tolueno/análogos & derivados , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Macrófagos/efeitos dos fármacos , Camundongos , Esteróis/antagonistas & inibidores , Esteróis/biossíntese , Tolueno/síntese química , Tolueno/química , Tolueno/farmacologia , Tripanossomicidas/síntese química , Trypanosoma cruzi/metabolismo
16.
Exp Parasitol ; 140: 33-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632192

RESUMO

Benznidazole (Bzn) is a nitroimidazole drug currently used as first line treatment against Chagas disease, a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. Although the drug has been used since the late 1960s, its mechanism of action is not fully understood. In an attempt to study Bzn mode of action, a structurally modified derivative of the drug was synthesized and immobilized into a solid matrix. This allowed enrichment of T. cruzi proteins capable of binding immobilized Bzn, which were subsequently analysed by mass spectrometry. The proteins identified as specific non-covalent Bzn interactors were a homologue of the bacterial YjeF proteins, a Sec23A orthologue and the aldo-ketoreductase family member TcAKR. TcAKR is closely related to other enzymes previously associated with Bzn reductive activation such as NTRI and TcOYE. Thus, our untargeted search for Bzn binding partners allowed us to encounter proteins that could be related to drug reductive activation and/or resistance mechanisms.


Assuntos
Nitroimidazóis/metabolismo , Proteômica , Proteínas de Protozoários/metabolismo , Tripanossomicidas/metabolismo , Trypanosoma cruzi/metabolismo , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Microesferas , Nitroimidazóis/síntese química , Proteínas de Protozoários/química , Sefarose/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trypanosoma cruzi/enzimologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
17.
J Enzyme Inhib Med Chem ; 29(2): 198-204, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23406473

RESUMO

CONTEXT: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of new small molecular weight compounds used against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified phenazine and 1,2,6-thiadiazine chemotypes as novel inhibitors of TIM from T. cruzi (TcTIM). OBJECTIVE: Study the mechanism of TcTIM inhibition by a phenazine derivative and by a 1,2,6-thiadiazine derivative. METHODS: We performed biochemical and theoretical molecular docking studies to characterize the interaction of the derivatives with wild-type and mutant TcTIM. RESULTS AND CONCLUSION: At low micromolar concentrations, the compounds induce highly selective irreversible inactivation of parasitic TIM. The molecular docking simulations indicate that the phenazine derivative likely interferes with the association of the two monomers of the dimeric enzyme by locating at the dimer interface, while 1,2,6-thiadiazine could act as an inhibitor binding to a region surrounding Cys-118.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Fenazinas/farmacologia , Tiadiazinas/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/química , Ligação Competitiva , Doença de Chagas/tratamento farmacológico , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/química , Escherichia coli/genética , Modelos Biológicos , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Fenazinas/química , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Tiadiazinas/química , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Trypanosoma cruzi/enzimologia
18.
ACS Med Chem Lett ; 15(6): 873-878, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38894931

RESUMO

Austroeupatol, the principal diterpene isolated from the invasive shrub Austroeupatorium inulifolium, holds promise for structural diversification and biological assessment of its derivatives due to its abundant availability and high yield isolation. We propose an efficient enzymatic synthesis of a series of austroeupatol esters derived from aliphatic and heterocyclic carboxylic acids. Systematic optimization of reaction parameters, including enzyme type and quantity, acylating agent amount, solvent, and temperature, was conducted. Thermomyces lanuginosus lipase in cyclohexane at 55 °C, yielded esters with favorable conversion rates. Through enzymatic catalysis, mono- and diacylated derivatives were obtained, with a diacylation-monoacylation ratio influenced by temperature and acylating agent amount. The antiprotozoal activity of austroeupatol and all synthesized derivatives was evaluated, observing that acylation improved it. The 19-valeroyl, 19-indolylpropyl, and 19-octyl derivatives were the most potent compounds against Trypanosoma cruzi and Leishmania infantum, highlighting this approach as a valuable method for synthesizing austroeupatol derivatives as potential antiparasitic agents.

19.
Antimicrob Agents Chemother ; 57(4): 1638-47, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335745

RESUMO

The nitroheterocycle nifurtimox, as part of a nifurtimox-eflornithine combination therapy, represents one of a limited number of treatments targeting Trypanosoma brucei, the causative agent of human African trypanosomiasis. The mode of action of this prodrug involves an initial activation reaction catalyzed by a type I nitroreductase (NTR), an enzyme found predominantly in prokaryotes, leading to the formation of a cytotoxic unsaturated open-chain nitrile metabolite. Here, we evaluate the trypanocidal activities of a library of other 5-nitrofurans against the bloodstream form of T. brucei as a preliminary step in the identification of additional nitroaromatic compounds that can potentially partner with eflornithine. Biochemical screening against the purified enzyme revealed that all 5-nitrofurans were effective substrates for T. brucei NTR (TbNTR), with the preferred compounds having apparent kcat/Km values approximately 50-fold greater than those of nifurtimox. For several compounds, in vitro reduction by this nitroreductase yielded products characterized by mass spectrometry as either unsaturated or saturated open-chain nitriles. When tested against the bloodstream form of T. brucei, many of the derivatives displayed significant growth-inhibitory properties, with the most potent compounds generating 50% inhibitory concentrations (IC50s) around 200 nM. The antiparasitic activities of the most potent agents were demonstrated to be NTR dependent, as parasites having reduced levels of the enzyme displayed resistance to the compounds, while parasites overexpressing TbNTR showed hypersensitivity. We conclude that other members of the 5-nitrofuran class of nitroheterocycles have the potential to treat human African trypanosomiasis, perhaps as an alternative partner prodrug to nifurtimox, in the next generation of eflornithine-based combinational therapies.


Assuntos
Nitrofuranos/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Nitrorredutases/metabolismo , Trypanosoma brucei brucei/metabolismo
20.
J Enzyme Inhib Med Chem ; 28(5): 981-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22803666

RESUMO

CONTEXT: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of small molecular weight compounds with potential use against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified a new selective inhibitor chemotype of TIM from T. cruzi (TcTIM), 1,2,4-thiadiazol-5(4H)-one. OBJECTIVE: Study the mechanism of TcTIM inhibition by a 1,2,4-thiadiazol derivative. METHODS: We performed the biochemical characterization of the interaction of the 1,2,4-thiadiazol derivative with the wild-type and mutant TcTIMs, using DOSY-NMR and MS experiments. Studies of T. cruzi growth inhibition were additionally carried out. RESULTS AND CONCLUSION: At low micromolar concentrations, the compound induces highly selective irreversible inactivation of TcTIM through non-covalent binding. Our studies indicate that it interferes with the association of the two monomers of the dimeric enzyme. We also show that it inhibits T. cruzi growth in culture.


Assuntos
Inibidores Enzimáticos/farmacologia , Tiadiazóis/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Trypanosoma cruzi/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química , Triose-Fosfato Isomerase/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA