Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093427

RESUMO

Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of ß-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Catepsina B/metabolismo , Córtex Cerebral/metabolismo , Mucopolissacaridose I/metabolismo , Células Piramidais/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Catepsina B/genética , Córtex Cerebral/patologia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Células Piramidais/patologia
2.
Biol Pharm Bull ; 41(8): 1164-1169, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30068865

RESUMO

Mast cell and testosterone interactions involved in renal fibrosis in rats subjected to unilateral ureteral obstruction (UUO) were investigated. Orchiectomized (ORX) and nonorchiectomized Wistar rats were subjected to UUO, and a nonorchiectomized group was sham-operated (control: SO). Animals from the UUO group were treated with saline or sodium cromoglycate (CG). Some ORX rats from the saline or CG groups also received testosterone propionate replacement (TR). Kidneys and blood were collected 14 d after UUO or SO. Kidney sections were stained with toluidine blue to quantify mast cells, and picrosirius red was used for collagen analysis. Immunohistochemistry for α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) expression was also performed. Plasma testosterone levels (PTLs) were measured. ORX decreased and TR normalized PTLs. UUO increased mast cell density in the kidney pelvis, but not in the kidney parenchyma. UUO increased mast cell degranulation, and CG or ORX inhibited this effect. TR partially reversed the effect of ORX on mast cell degranulation, and CG partially inhibited that effect of TR. UUO increased the collagen areas of the renal parenchyma, whereas CG or ORX abolished that alteration; TR reversed the effects of ORX, and CG partially inhibited that effect of TR. UUO increased tubulointerstitial α-SMA expression and PCNA-positive cells, and these changes were sensitive to ORX or CG to the same degree, while TR again reversed the effect of ORX. Renal fibrosis after UUO appears to be determined by interactions between testosterone and mast cells.


Assuntos
Nefropatias/patologia , Rim/fisiologia , Mastócitos/fisiologia , Testosterona/sangue , Obstrução Ureteral/patologia , Actinas/metabolismo , Animais , Degranulação Celular , Colágeno/metabolismo , Creatinina/sangue , Creatinina/urina , Fibrose , Taxa de Filtração Glomerular , Terapia de Reposição Hormonal , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/sangue , Nefropatias/metabolismo , Masculino , Orquiectomia , Ratos Wistar , Obstrução Ureteral/sangue , Obstrução Ureteral/metabolismo
3.
Cell Calcium ; 90: 102241, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32562975

RESUMO

Calcium is a ubiquitous intracellular second messenger, playing central roles in the regulation of several biological processes. Alterations in Ca2+ homeostasis and signaling are an important feature of tumor cells to acquire proliferative and survival advantages, which include structural and functional changes in storage capacity, channels, and pumps. Here, we investigated the differences in Ca2+ homeostasis in vemurafenib-responsive and non-responsive melanoma cells. Also, the expression of the Na+/Ca2+ exchanger (NCX) and the impact of its inhibition were studied. For this, it was used B-RAFV600E and NRASQ61R-mutated human melanoma cells. The intracellular Ca2+ chelator BAPTA-AM decreased the viability of SK-MEL-147 but not of SK-MEL-19 and EGTA sensitized NRASQ61R-mutated cells to vemurafenib. These cells also presented a smaller response to thapsargin and ionomycin regarding the cytosolic Ca2+ levels in relation to SK-MEL-19, which was associated to an increased expression of NCX1, NO basal levels, and sensitivity to NCX inhibitors. These data highlight the differences between B-RAFV600E and NRASQ61R-mutated melanoma cells in response to Ca2+ stimuli and point to the potential combination of clinically used chemotherapeutic drugs, including vemurafenib, with NCX inhibitors as a new therapeutic strategy to the treatment of melanoma.


Assuntos
Cálcio/metabolismo , GTP Fosfo-Hidrolases/genética , Melanoma/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trifosfato de Adenosina/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/farmacologia , Citosol/metabolismo , Humanos , Ionomicina/farmacologia , Melanoma/patologia , Mutação , Óxido Nítrico/metabolismo , Neoplasias Cutâneas/patologia , Trocador de Sódio e Cálcio/metabolismo , Tapsigargina/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Vemurafenib/farmacologia
4.
Dent Mater ; 36(6): e184-e193, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305153

RESUMO

OBJECTIVES: This study evaluated the cell viability and expression of different major genes involved in mineralization in odontoblast-like cells exposed to sodium trimetaphosphate (STMP). It was also investigated the influence of STMP on the rate of calcium phosphate crystal growth, its anti-proteolytic action against the enzymatic degradation of type I collagen, the binding mechanism of STMP to collagen fibrils, and the potential mechanism to induce collagen stabilization. METHODS: Immortalized rat odontoblast MDPC-23 cells were cultured. Cell viability was assessed by trypan blue staining, and the changes in gene expression balance induced by STMP were assessed by quantitative reverse transcription (qRT) PCR assays. Crystalline particle formation was monitored by light-scattering detectors to estimate pH variation and the radial size of the crystalline particles as a function of reaction time (pH 7.4, 25°C) in the presence of STMP in supersaturated calcium phosphate solution (Ca/P=1.67). Images were obtained under atomic force microscopy (AFM) to measure the particle size in the presence of STMP. A three-point bending test was used to obtain the elastic modulus of fully demineralized dentin beams after immersion in STMP solution. The binding mechanism of STMP to collagen fibrils and potential stabilization mechanism was assessed with circular dichroism spectrometry (CD). The data were analyzed statistically (α=0.05). RESULTS: STMP had no significant influence on the cell viability and gene expression of the MDPC-23 cells. STMP greatly increased the rate of crystal growth, significantly increasing the average radial crystal size. AFM corroborated the significant increase of STPM-treated crystal size. Mineralized collagen I fibrils exhibited less collagenase degradation with lower STMP concentration. CD analysis demonstrated changes in the conformational stability after STMP binding to type I collagen. SIGNIFICANCE: The increased resistance of collagen against the proteolytic activity of collagenases appears to be related to the conformational change induced by STMP binding in collagen I and the STMP capacity for promoting biomimetic mineralization in type I collagen fibrils.


Assuntos
Colágeno Tipo I , Dentina , Animais , Colágeno , Colagenases , Polifosfatos , Ratos
5.
Dent Mater ; 35(4): 606-616, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30808560

RESUMO

OBJECTIVE: Clinical issues have been raised about problems related to cytotoxic effects caused when applying self-adhesive cement. It was hypothesized that byproducts eluted from self-adhesive cements modulate oxidative stress response, the gene expression of signaling pathways of inflammatory process/transcriptional activators, and the expression and activity of interstitial collagenases, and modify the phenotypic characteristics of cellular proliferation and mineral deposition in odontoblastic-like cells. METHODS: Cements (MaxCem Elite [MAX] and RelyX U200 [U200)]) were mixed, dispensed into moulds, and photoactivated according to the manufacturers' instructions. Immortalized rat odontoblast-like cells (MDPC-23) were cultured and exposed to polymerized specimens of cements for 4 h. Reactive oxidative specimen production and quantification of gene expression were evaluated. Cell proliferation assay and alizarin red staining were also performed to evaluate the disturbance induced by the cements on cellular proliferation and mineralization. RESULTS: Despite their cytotoxic effects, both self-adhesive cements influenced the metabolism in the odontoblast cells on different scales. MAX induced significantly higher oxidative stress in odontoblast cells than U200. Gene expression varied as a function of exposure to self-adhesive cements; MAX induced the expression of pro-inflammatory cytokines such as TNF-α, whereas U200 downregulated, virtually depleted TNF-α expression, also inducing overexpression of the transcriptional factor Runx2. Overexpression of heme oxygenase-1 (HO-1) and thioredoxin reductase 1 (TRXR1) occurred after exposure to both cements, antioxidant genes that are downstream of Keap1-Nrf2-ARE system. MAX significantly induced the overexpression of collagenase MMP-1, and U200 induced the expression of gelatinase MMP-2. MAX significantly inhibited cell proliferation whereas U200 significantly activated cell proliferation. Alizarin red staining revealed significantly decreased mineral deposition especially when exposed to MAX. SIGNIFICANCE: These results support the hypothesis that byproducts of different self-adhesive cements play important roles in the highly orchestrated process which ultimately affect the cellular proliferation and the mineral deposition in odontoblastic-like cells, possibly delaying the reparative dentin formation after cementation of indirect restorations, especially on recently exposed dentin preparations.


Assuntos
Colagem Dentária , Cimentos de Resina , Animais , Proliferação de Células , Cimentos Dentários , Dentina , Proteína 1 Associada a ECH Semelhante a Kelch , Teste de Materiais , Fator 2 Relacionado a NF-E2 , Odontoblastos , Estresse Oxidativo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA