Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179668

RESUMO

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia , Pericitos
2.
Cell ; 182(3): 594-608.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32679030

RESUMO

Human cerebral cortex size and complexity has increased greatly during evolution. While increased progenitor diversity and enhanced proliferative potential play important roles in human neurogenesis and gray matter expansion, the mechanisms of human oligodendrogenesis and white matter expansion remain largely unknown. Here, we identify EGFR-expressing "Pre-OPCs" that originate from outer radial glial cells (oRGs) and undergo mitotic somal translocation (MST) during division. oRG-derived Pre-OPCs provide an additional source of human cortical oligodendrocyte precursor cells (OPCs) and define a lineage trajectory. We further show that human OPCs undergo consecutive symmetric divisions to exponentially increase the progenitor pool size. Additionally, we find that the OPC-enriched gene, PCDH15, mediates daughter cell repulsion and facilitates proliferation. These findings indicate properties of OPC derivation, proliferation, and dispersion important for human white matter expansion and myelination.


Assuntos
Caderinas/metabolismo , Córtex Cerebral/citologia , Células Ependimogliais/metabolismo , Neurogênese/genética , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proliferação de Células/genética , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Células Precursoras de Oligodendrócitos/citologia , RNA Interferente Pequeno , RNA-Seq , Análise de Célula Única , Substância Branca/citologia , Substância Branca/embriologia , Substância Branca/metabolismo
3.
Cell ; 161(7): 1644-55, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091041

RESUMO

Adult neural stem/progenitor (B1) cells within the walls of the lateral ventricles generate different types of neurons for the olfactory bulb (OB). The location of B1 cells determines the types of OB neurons they generate. Here we show that the majority of mouse B1 cell precursors are produced between embryonic days (E) 13.5 and 15.5 and remain largely quiescent until they become reactivated postnatally. Using a retroviral library carrying over 100,000 genetic tags, we found that B1 cells share a common progenitor with embryonic cells of the cortex, striatum, and septum, but this lineage relationship is lost before E15.5. The regional specification of B1 cells is evident as early as E11.5 and is spatially linked to the production of neurons that populate different areas of the forebrain. This study reveals an early embryonic regional specification of postnatal neural stem cells and the lineage relationship between them and embryonic progenitor cells.


Assuntos
Células-Tronco Adultas/citologia , Linhagem da Célula , Embrião de Mamíferos/citologia , Células-Tronco Neurais/citologia , Bulbo Olfatório/citologia , Células-Tronco Adultas/classificação , Animais , Camundongos , Células-Tronco Neurais/classificação , Prosencéfalo/citologia
4.
Nature ; 626(8001): 1056-1065, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122823

RESUMO

The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.


Assuntos
Movimento Celular , Neurônios , Lobo Temporal , Animais , Pré-Escolar , Humanos , Lactente , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Eminência Ganglionar/citologia , Interneurônios/citologia , Interneurônios/fisiologia , Macaca mulatta , Neurônios/citologia , Neurônios/fisiologia , Análise da Expressão Gênica de Célula Única , Lobo Temporal/citologia , Lobo Temporal/crescimento & desenvolvimento
5.
Nature ; 622(7981): 112-119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704727

RESUMO

The molecular mechanisms and evolutionary changes accompanying synapse development are still poorly understood1,2. Here we generate a cross-species proteomic map of synapse development in the human, macaque and mouse neocortex. By tracking the changes of more than 1,000 postsynaptic density (PSD) proteins from midgestation to young adulthood, we find that PSD maturation in humans separates into three major phases that are dominated by distinct pathways. Cross-species comparisons reveal that human PSDs mature about two to three times slower than those of other species and contain higher levels of Rho guanine nucleotide exchange factors (RhoGEFs) in the perinatal period. Enhancement of RhoGEF signalling in human neurons delays morphological maturation of dendritic spines and functional maturation of synapses, potentially contributing to the neotenic traits of human brain development. In addition, PSD proteins can be divided into four modules that exert stage- and cell-type-specific functions, possibly explaining their differential associations with cognitive functions and diseases. Our proteomic map of synapse development provides a blueprint for studying the molecular basis and evolutionary changes of synapse maturation.


Assuntos
Proteômica , Sinapses , Adolescente , Animais , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Camundongos , Adulto Jovem , Cognição/fisiologia , Espinhas Dendríticas , Idade Gestacional , Macaca , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Especificidade da Espécie , Sinapses/metabolismo , Sinapses/fisiologia
6.
Nature ; 601(7893): 397-403, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912114

RESUMO

The cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences1-5. However, the developmental potential of human cortical progenitors has not been thoroughly explored. Here we show that, in addition to excitatory neurons and glia, human cortical progenitors are also capable of producing GABAergic neurons with the transcriptional characteristics and morphologies of cortical interneurons. By developing a cellular barcoding tool called 'single-cell-RNA-sequencing-compatible tracer for identifying clonal relationships' (STICR), we were able to carry out clonal lineage tracing of 1,912 primary human cortical progenitors from six specimens, and to capture both the transcriptional identities and the clonal relationships of their progeny. A subpopulation of cortically born GABAergic neurons was transcriptionally similar to cortical interneurons born from the caudal ganglionic eminence, and these cells were frequently related to excitatory neurons and glia. Our results show that individual human cortical progenitors can generate both excitatory neurons and cortical interneurons, providing a new framework for understanding the origins of neuronal diversity in the human cortex.


Assuntos
Linhagem da Célula , Córtex Cerebral , Interneurônios , Inibição Neural , Neurônios , Córtex Cerebral/citologia , Neurônios GABAérgicos/citologia , Humanos , Interneurônios/citologia , Neurônios/citologia
7.
Proc Natl Acad Sci U S A ; 121(6): e2313596120, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38285948

RESUMO

Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into the cortex where they make connections with locally produced excitatory glutamatergic neurons. Cortical function critically depends on the number of cINs, which is also key to establishing the appropriate inhibitory/excitatory balance. The final number of cINs is determined during a postnatal period of programmed cell death (PCD) when ~40% of the young cINs are eliminated. Previous work shows that the loss of clustered gamma protocadherins (Pcdhgs), but not of genes in the Pcdha or Pcdhb clusters, dramatically increased BAX-dependent cIN PCD. Here, we show that PcdhγC4 is highly expressed in cINs of the mouse cortex and that this expression increases during PCD. The sole deletion of the PcdhγC4 isoform, but not of the other 21 isoforms in the Pcdhg gene cluster, increased cIN PCD. Viral expression of the PcdhγC4, in cIN lacking the function of the entire Pcdhg cluster, rescued most of these cells from cell death. We conclude that PcdhγC4 plays a critical role in regulating the survival of cINs during their normal period of PCD. This highlights how a single isoform of the Pcdhg cluster, which has been linked to human neurodevelopmental disorders, is essential to adjust cIN cell numbers during cortical development.


Assuntos
Interneurônios , Protocaderinas , Camundongos , Animais , Humanos , Interneurônios/fisiologia , Neurônios/metabolismo , Apoptose/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Córtex Cerebral/fisiologia
8.
Nature ; 555(7696): 377-381, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513649

RESUMO

New neurons continue to be generated in the subgranular zone of the dentate gyrus of the adult mammalian hippocampus. This process has been linked to learning and memory, stress and exercise, and is thought to be altered in neurological disease. In humans, some studies have suggested that hundreds of new neurons are added to the adult dentate gyrus every day, whereas other studies find many fewer putative new neurons. Despite these discrepancies, it is generally believed that the adult human hippocampus continues to generate new neurons. Here we show that a defined population of progenitor cells does not coalesce in the subgranular zone during human fetal or postnatal development. We also find that the number of proliferating progenitors and young neurons in the dentate gyrus declines sharply during the first year of life and only a few isolated young neurons are observed by 7 and 13 years of age. In adult patients with epilepsy and healthy adults (18-77 years; n = 17 post-mortem samples from controls; n = 12 surgical resection samples from patients with epilepsy), young neurons were not detected in the dentate gyrus. In the monkey (Macaca mulatta) hippocampus, proliferation of neurons in the subgranular zone was found in early postnatal life, but this diminished during juvenile development as neurogenesis decreased. We conclude that recruitment of young neurons to the primate hippocampus decreases rapidly during the first years of life, and that neurogenesis in the dentate gyrus does not continue, or is extremely rare, in adult humans. The early decline in hippocampal neurogenesis raises questions about how the function of the dentate gyrus differs between humans and other species in which adult hippocampal neurogenesis is preserved.


Assuntos
Hipocampo/citologia , Neurogênese , Neurônios/citologia , Adolescente , Adulto , Idoso , Animais , Animais Recém-Nascidos , Contagem de Células , Proliferação de Células , Criança , Pré-Escolar , Giro Denteado/citologia , Giro Denteado/embriologia , Epilepsia/patologia , Feminino , Desenvolvimento Fetal , Voluntários Saudáveis , Hipocampo/anatomia & histologia , Hipocampo/embriologia , Humanos , Lactente , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais/citologia , Adulto Jovem
9.
J Neurosci ; 41(12): 2554-2565, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762407

RESUMO

Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Adulto , Diferenciação Celular/fisiologia , Criança , Humanos , Plasticidade Neuronal/fisiologia
10.
Development ; 146(4)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777863

RESUMO

In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.


Assuntos
Células-Tronco Adultas/fisiologia , Hipocampo/fisiologia , Ventrículos Laterais/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Bulbo Olfatório/fisiologia , Animais , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/fisiologia , Hipocampo/embriologia , Humanos , Interneurônios/fisiologia , Ventrículos Laterais/embriologia , Camundongos , Neurônios/fisiologia , Bulbo Olfatório/embriologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Transcriptoma
11.
J Neurosci ; 39(14): 2635-2648, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30705101

RESUMO

The maturation of GABAergic inhibitory circuits is necessary for the onset of the critical period for ocular dominance plasticity (ODP) in the postnatal visual cortex (Hensch, 2005; Espinosa and Stryker, 2012). When it is deficient, the critical period does not start. When inhibitory maturation or signaling is precocious, it induces a precocious critical period. Heterochronic transplantation of GABAergic interneuron precursors derived from the medial ganglionic eminence (MGE) can induce a second period of functional plasticity in the visual cortex (Southwell et al., 2010). Although the timing of MGE transplantation-induced plasticity is dictated by the maturation of the transplanted cells, its mechanisms remain largely unknown. Here, we sought to test the effect of blocking vesicular GABA loading and subsequent release by transplanted interneurons on the ability to migrate, integrate, and induce plasticity in the host circuitry. We show that MGE cells taken from male and female donors that lack vesicular GABA transporter (Vgat) expression disperse and differentiate into somatostatin- and parvalbumin-expressing interneurons upon heterochronic transplantation in the postnatal mouse cortex. Although transplanted Vgat mutant interneurons come to express mature interneuron markers and display electrophysiological properties similar to those of control cells, their morphology is significantly more complex. Significantly, Vgat mutant MGE transplants fail to induce ODP, demonstrating the pivotal role of vesicular GABAergic transmission for MGE transplantation-induced plasticity in the postnatal mouse visual cortex.SIGNIFICANCE STATEMENT Embryonic inhibitory neurons thrive when transplanted into postnatal brains, migrating and differentiating in the host as they would have done if left in the donor. Once integrated into the host, these new neurons can have profound effects. For example, in the visual cortex, such neurons induce a second critical period of activity-dependent plasticity when they reach the appropriate stage of development. The cellular mechanism by which these transplanted GABAergic interneurons induce plasticity is unknown. Here, we show that transplanted interneurons that are unable to fill synaptic vesicles with GABA migrate and integrate into the host circuit, but they do not induce a second period of plasticity. These data suggest a role for the vesicular GABA transporter in transplantation-mediated plasticity.


Assuntos
Período Crítico Psicológico , Interneurônios/metabolismo , Interneurônios/transplante , Plasticidade Neuronal/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/biossíntese , Córtex Visual/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa/métodos , Córtex Visual/crescimento & desenvolvimento
12.
J Neurosci ; 39(38): 7529-7538, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31391263

RESUMO

Transplantation of even a small number of embryonic inhibitory neurons from the medial ganglionic eminence (MGE) into postnatal visual cortex makes it lose responsiveness to an eye deprived of vision when the transplanted neurons reach the age of the normal critical period of activity-dependent ocular dominance (OD) plasticity. The transplant might induce OD plasticity in the host circuitry or might instead construct a parallel circuit of its own to suppress cortical responses to the deprived eye. We transplanted MGE neurons expressing either archaerhodopsin or channelrhodopsin into the visual cortex of both male and female mice, closed one eyelid for 4-5 d, and, as expected, observed transplant-induced OD plasticity. This plasticity was evident even when the activity of the transplanted cells was suppressed or enhanced optogenetically, demonstrating that the plasticity was produced by changes in the host visual cortex.SIGNIFICANCE STATEMENT Interneuron transplantation into mouse V1 creates a window of heightened plasticity that is quantitatively and qualitatively similar to the normal critical period; that is, short-term occlusion of either eye markedly changes ocular dominance (OD). The underlying mechanism of this process is not known. Transplanted interneurons might either form a separate circuit to maintain the OD shift or might instead trigger changes in the host circuity. We designed experiments to distinguish the two hypotheses. Our findings suggest that while inhibition produced by the transplanted cells triggers this form of plasticity, the host circuity is entirely responsible for maintaining the OD shift.


Assuntos
Dominância Ocular/fisiologia , Interneurônios/transplante , Plasticidade Neuronal/fisiologia , Córtex Visual/fisiologia , Animais , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Cereb Cortex ; 28(9): 3278-3294, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981617

RESUMO

Neural stem cells in the postnatal telencephalic ventricular-subventricular zone (V-SVZ) generate new interneurons, which migrate tangentially through the rostral migratory stream (RMS) into the olfactory bulb (OB). The Sp8 and Sp9 transcription factors are expressed in neuroblasts, as well as in the immature and mature interneurons in the V-SVZ-RMS-OB system. Here we show that Sp8 and Sp9 coordinately regulate OB interneuron development: although Sp9 null mutants show no major OB interneuron defect, conditional deletion of both Sp8 and Sp9 resulted in a much more severe reduction of OB interneuron number than that observed in the Sp8 conditional mutant mice, due to defects in neuronal differentiation, tangential and radial migration, and increased cell death in the V-SVZ-RMS-OB system. RNA-Seq and RNA in situ hybridization reveal that, in Sp8/Sp9 double mutant mice, but not in Sp8 or Sp9 single mutant mice, newly born neuroblasts in the V-SVZ-RMS-OB system fail to express Prokr2 and Tshz1 expression, genes with known roles in promoting OB interneuron differentiation and migration, and that are involved in human Kallmann syndrome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interneurônios/metabolismo , Neurogênese/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia , Fatores de Transcrição/metabolismo , Animais , Interneurônios/citologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
14.
Cereb Cortex ; 28(6): 1946-1958, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449024

RESUMO

The neocortex of primates, including humans, contains more abundant and diverse inhibitory neurons compared with rodents, but the molecular foundations of these observations are unknown. Through integrative gene coexpression analysis, we determined a consensus transcriptional profile of GABAergic neurons in mid-gestation human neocortex. By comparing this profile to genes expressed in GABAergic neurons purified from neonatal mouse neocortex, we identified conserved and distinct aspects of gene expression in these cells between the species. We show here that the calcium-binding protein secretagogin (SCGN) is robustly expressed by neocortical GABAergic neurons derived from caudal ganglionic eminences (CGE) and lateral ganglionic eminences during human but not mouse brain development. Through electrophysiological and morphometric analyses, we examined the effects of SCGN expression on GABAergic neuron function and form. Forced expression of SCGN in CGE-derived mouse GABAergic neurons significantly increased total neurite length and arbor complexity following transplantation into mouse neocortex, revealing a molecular pathway that contributes to morphological differences in these cells between rodents and primates.


Assuntos
Neurônios GABAérgicos/metabolismo , Neocórtex/embriologia , Neurogênese/fisiologia , Secretagoginas/metabolismo , Animais , Humanos , Interneurônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Transcriptoma
15.
Nature ; 491(7422): 109-13, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23041929

RESUMO

Cortical inhibitory circuits are formed by γ-aminobutyric acid (GABA)-secreting interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis, is that cortical interneurons are overproduced, and then after their migration into cortex the excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we characterize the developmental cell death of mouse cortical interneurons in vivo, in vitro and after transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax (Bcl-2-associated X)-dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by neurons of the central nervous system. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Taken together, our findings indicate that interneuron cell death is determined intrinsically, either cell-autonomously or through a population-autonomous competition for survival signals derived from other interneurons.


Assuntos
Apoptose , Interneurônios/citologia , Neocórtex/citologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Contagem de Células , Sobrevivência Celular , Senescência Celular/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Interneurônios/transplante , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
16.
J Neurophysiol ; 118(1): 131-139, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356470

RESUMO

Interneuron precursors transplanted into visual cortex induce network plasticity during their heterochronic maturation. Such plasticity can have a significant impact on the function of the animal and is normally present only during a brief critical period in early postnatal development. Elucidating the synaptic and physiological properties of interneuron precursors as they mature is key to understanding how long-term circuit changes are induced by transplants. We studied the development of transplant-derived interneurons and compared it to endogenously developing interneurons (those that are born and develop in the same animal) at parallel developmental time points, using patch-clamp recordings in acute cortical slices. We found that transplant-derived interneurons develop into fast-spiking and non-fast-spiking neurons characteristic of the medial ganglionic eminence (MGE) lineage. Transplant-derived interneurons matured more rapidly than endogenously developing interneurons, as shown by more hyperpolarized membrane potentials, smaller input resistances, and narrower action potentials at a juvenile age. In addition, transplant-derived fast-spiking interneurons have more quickly saturating input-output relationships and lower maximal firing rates in adulthood, indicating a possible divergence in function. Transplant-derived interneurons both form inhibitory synapses onto host excitatory neurons and receive excitatory synapses from host pyramidal cells. Unitary connection properties are similar to those of host interneurons. These transplant-derived interneurons, however, were less densely functionally connected onto host pyramidal cells than were host interneurons and received fewer spontaneous excitatory inputs from host cells. These findings suggest that many physiological characteristics of interneurons are autonomously determined, while some factors impacting their circuit function may be influenced by the environment in which they develop.NEW & NOTEWORTHY Transplanting embryonic interneurons into older brains induces a period of plasticity in the recipient animal. We find that these interneurons develop typical fast-spiking and non-fast-spiking phenotypes by the end of adolescence. However, the input-output characteristics of transplant-derived neurons diverged from endogenously developing interneurons during adulthood, and they showed lower connection rates to local pyramidal cells at all time points. This suggests a unique and ongoing role of transplant-derived interneurons in host circuits, enabling interneuron transplant therapies.


Assuntos
Córtex Cerebral/citologia , Interneurônios/fisiologia , Neurogênese , Células Piramidais/fisiologia , Potenciais de Ação , Animais , Córtex Cerebral/embriologia , Interneurônios/citologia , Interneurônios/transplante , Camundongos , Células Piramidais/citologia , Sinapses/fisiologia
17.
Annu Rev Neurosci ; 32: 149-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19555289

RESUMO

Glial cells were long considered end products of neural differentiation, specialized supportive cells with an origin very different from that of neurons. New studies have shown that some glial cells--radial glia (RG) in development and specific subpopulations of astrocytes in adult mammals--function as primary progenitors or neural stem cells (NSCs). This is a fundamental departure from classical views separating neuronal and glial lineages early in development. Direct visualization of the behavior of NSCs and lineage-tracing studies reveal how neuronal lineages emerge. In development and in the adult brain, many neurons and glial cells are not the direct progeny of NSCs, but instead originate from transit amplifying, or intermediate, progenitor cells (IPCs). Within NSCs and IPCs, genetic programs unfold for generating the extraordinary diversity of cell types in the central nervous system. The timing in development and location of NSCs, a property tightly linked to their neuroepithelial origin, appear to be the key determinants of the types of neurons generated. Identification of NSCs and IPCs is critical to understand brain development and adult neurogenesis and to develop new strategies for brain repair.


Assuntos
Células-Tronco Adultas/fisiologia , Linhagem da Célula/fisiologia , Sistema Nervoso Central/embriologia , Neuroglia/fisiologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Neurogênese/fisiologia , Neuroglia/citologia , Neurônios/citologia , Células-Tronco/citologia
18.
Nature ; 478(7369): 382-6, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21964341

RESUMO

The subventricular zone of many adult non-human mammals generates large numbers of new neurons destined for the olfactory bulb. Along the walls of the lateral ventricles, immature neuronal progeny migrate in tangentially oriented chains that coalesce into a rostral migratory stream (RMS) connecting the subventricular zone to the olfactory bulb. The adult human subventricular zone, in contrast, contains a hypocellular gap layer separating the ependymal lining from a periventricular ribbon of astrocytes. Some of these subventricular zone astrocytes can function as neural stem cells in vitro, but their function in vivo remains controversial. An initial report found few subventricular zone proliferating cells and rare migrating immature neurons in the RMS of adult humans. In contrast, a subsequent study indicated robust proliferation and migration in the human subventricular zone and RMS. Here we find that the infant human subventricular zone and RMS contain an extensive corridor of migrating immature neurons before 18 months of age but, contrary to previous reports, this germinal activity subsides in older children and is nearly extinct by adulthood. Surprisingly, during this limited window of neurogenesis, not all new neurons in the human subventricular zone are destined for the olfactory bulb--we describe a major migratory pathway that targets the prefrontal cortex in humans. Together, these findings reveal robust streams of tangentially migrating immature neurons in human early postnatal subventricular zone and cortex. These pathways represent potential targets of neurological injuries affecting neonates.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular , Neurônios/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Condutos Olfatórios/citologia
19.
Proc Natl Acad Sci U S A ; 111(51): 18339-44, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489113

RESUMO

GABAergic inhibition has been shown to play an important role in the opening of critical periods of brain plasticity. We recently have shown that transplantation of GABAergic precursors from the embryonic medial ganglionic eminence (MGE), the source of neocortical parvalbumin- (PV(+)) and somatostatin-expressing (SST(+)) interneurons, can induce a new period of ocular dominance plasticity (ODP) after the endogenous period has closed. Among the diverse subtypes of GABAergic interneurons PV(+) cells have been thought to play the crucial role in ODP. Here we have used MGE transplantation carrying a conditional allele of diphtheria toxin alpha subunit and cell-specific expression of Cre recombinase to deplete PV(+) or SST(+) interneurons selectively and to investigate the contributions of each of these types of interneurons to ODP. As expected, robust plasticity was observed in transplants containing PV(+) cells but in which the majority of SST(+) interneurons were depleted. Surprisingly, transplants in which the majority of PV(+) cells were depleted induced plasticity as effectively as those containing PV(+) cells. In contrast, depleting both cell types blocked induction of plasticity. These findings reveal that PV(+) cells do not play an exclusive role in ODP; SST(+) interneurons also can drive cortical plasticity and contribute to the reshaping of neural networks. The ability of both PV(+) and SST(+) interneurons to induce de novo cortical plasticity could help develop new therapeutic approaches for brain repair.


Assuntos
Transplante de Células , Interneurônios/citologia , Eminência Mediana/embriologia , Plasticidade Neuronal , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Animais , Interneurônios/metabolismo , Eminência Mediana/citologia , Camundongos , Camundongos Endogâmicos C57BL
20.
Proc Natl Acad Sci U S A ; 111(34): 12438-43, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114218

RESUMO

The apical domain of embryonic (radial glia) and adult (B1 cells) neural stem cells (NSCs) contains a primary cilium. This organelle has been suggested to function as an antenna for the detection of morphogens or growth factors. In particular, primary cilia are essential for Hedgehog (Hh) signaling, which plays key roles in brain development. Their unique location facing the ventricular lumen suggests that primary cilia in NSCs could play an important role in reception of signals within the cerebrospinal fluid. Surprisingly, ablation of primary cilia using conditional alleles for genes essential for intraflagellar transport [kinesin family member 3A (Kif3a) and intraflagellar transport 88 (Ift88)] and Cre drivers that are activated at early [Nestin; embryonic day 10.5 (E10.5)] and late [human glial fibrillary acidic protein (hGFAP); E13.5] stages of mouse neural development resulted in no apparent developmental defects. Neurogenesis in the ventricular-subventricular zone (V-SVZ) shortly after birth was also largely unaffected, except for a restricted ventral domain previously known to be regulated by Hh signaling. However, Kif3a and Ift88 genetic ablation also disrupts ependymal cilia, resulting in hydrocephalus by postnatal day 4. To directly study the role of B1 cells' primary cilia without the confounding effects of hydrocephalus, we stereotaxically targeted elimination of Kif3a from a subpopulation of radial glia, which resulted in ablation of primary cilia in a subset of B1 cells. Again, this experiment resulted in decreased neurogenesis only in the ventral V-SVZ. Primary cilia ablation led to disruption of Hh signaling in this subdomain. We conclude that primary cilia are required in a specific Hh-regulated subregion of the postnatal V-SVZ.


Assuntos
Cílios/fisiologia , Células-Tronco Neurais/classificação , Células-Tronco Neurais/ultraestrutura , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proliferação de Células , Células-Tronco Embrionárias/classificação , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/ultraestrutura , Feminino , Técnicas de Silenciamento de Genes , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas Hedgehog/fisiologia , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Gravidez , Transdução de Sinais , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA