Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 143(3): 437-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520561

RESUMO

General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.


Assuntos
Deficiências do Desenvolvimento , RNA Polimerase III , Fatores de Transcrição TFIII , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Alelos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/genética , Mutação , Linhagem , Fenótipo , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Peixe-Zebra/genética
2.
Mov Disord ; 39(6): 983-995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581205

RESUMO

BACKGROUND: Based on a limited number of reported families, biallelic CA8 variants have currently been associated with a recessive neurological disorder named, cerebellar ataxia, mental retardation, and dysequilibrium syndrome 3 (CAMRQ-3). OBJECTIVES: We aim to comprehensively investigate CA8-related disorders (CA8-RD) by reviewing existing literature and exploring neurological, neuroradiological, and molecular observations in a cohort of newly identified patients. METHODS: We analyzed the phenotype of 27 affected individuals from 14 families with biallelic CA8 variants (including data from 15 newly identified patients from eight families), ages 4 to 35 years. Clinical, genetic, and radiological assessments were performed, and zebrafish models with ca8 knockout were used for functional analysis. RESULTS: Patients exhibited varying degrees of neurodevelopmental disorders (NDD), along with predominantly progressive cerebellar ataxia and pyramidal signs and variable bradykinesia, dystonia, and sensory impairment. Quadrupedal gait was present in only 10 of 27 patients. Progressive selective cerebellar atrophy, predominantly affecting the superior vermis, was a key diagnostic finding in all patients. Seven novel homozygous CA8 variants were identified. Zebrafish models demonstrated impaired early neurodevelopment and motor behavior on ca8 knockout. CONCLUSION: Our comprehensive analysis of phenotypic features indicates that CA8-RD exhibits a wide range of clinical manifestations, setting it apart from other subtypes within the category of CAMRQ. CA8-RD is characterized by cerebellar atrophy and should be recognized as part of the autosomal-recessive cerebellar ataxias associated with NDD. Notably, the presence of progressive superior vermis atrophy serves as a valuable diagnostic indicator. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Peixe-Zebra , Humanos , Ataxia Cerebelar/genética , Criança , Adolescente , Masculino , Feminino , Pré-Escolar , Animais , Adulto , Adulto Jovem , Anoctaminas/genética , Deficiência Intelectual/genética , Fenótipo , Transtornos do Neurodesenvolvimento/genética
3.
Neuropediatrics ; 55(1): 71-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36914163

RESUMO

Subdural hemorrhages (SDHs) in the pediatric population are associated with a high mortality and morbidity and may present in the context of abusive head trauma. Diagnostic investigations for such cases often include evaluation for rare genetic and metabolic disorders that can have associated SDH. Sotos syndrome is an overgrowth syndrome associated with macrocephaly and increased subarachnoid spaces and rarely with neurovascular complications. Here, we report two cases of Sotos syndrome, one with SDH during infancy who underwent repeated evaluation for suspected child abuse prior to the Sotos syndrome diagnosis and the other with enlarged extra-axial cerebrospinal fluid spaces, demonstrating a possible mechanism for SDH development in this setting. These cases suggest that some individuals with Sotos syndrome may be at elevated risk of developing SDH in infancy and that Sotos syndrome should be on the differential diagnosis during a medical genetics evaluation in cases of unexplained SDH, especially in the setting of macrocephaly.


Assuntos
Maus-Tratos Infantis , Traumatismos Craniocerebrais , Megalencefalia , Síndrome de Sotos , Humanos , Criança , Lactente , Síndrome de Sotos/complicações , Síndrome de Sotos/diagnóstico , Síndrome de Sotos/genética , Hematoma Subdural/diagnóstico , Traumatismos Craniocerebrais/complicações , Maus-Tratos Infantis/diagnóstico , Megalencefalia/etiologia , Megalencefalia/complicações
4.
Mol Genet Metab ; 140(1-2): 107710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903659

RESUMO

Iron­sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.


Assuntos
Proteínas Ferro-Enxofre , Doenças Mitocondriais , Ácido Tióctico , Humanos , Pré-Escolar , Feminino , Lactente , Lisina/metabolismo , Triptofano/metabolismo , Proteínas Ferro-Enxofre/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biomarcadores/metabolismo , Glicina/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte/genética
5.
Am J Med Genet A ; 191(10): 2602-2609, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37159414

RESUMO

Eukaryotic translation elongation factor 2 (eEF2), encoded by the gene EEF2, is an essential factor involved in the elongation phase of protein translation. A specific heterozygous missense variant (p.P596H) in EEF2 was originally identified in association with autosomal dominant adult-onset spinocerebellar ataxia-26 (SCA26). More recently, additional heterozygous missense variants in this gene have been described to cause a novel, childhood-onset neurodevelopmental disorder with benign external hydrocephalus. Herein, we report two unrelated individuals with a similar gene-disease correlation to support this latter observation. Patient 1 is a 7-year-old male with a previously reported, de novo missense variant (p.V28M) who has motor and speech delay, autism spectrum disorder, failure to thrive with relative macrocephaly, unilateral microphthalmia with coloboma and eczema. Patient 2 is a 4-year-old female with a novel de novo nonsense variant (p.Q145X) with motor and speech delay, hypotonia, macrocephaly with benign ventricular enlargement, and keratosis pilaris. These additional cases help to further expand the genotypic and phenotypic spectrum of this newly described EEF2-related neurodevelopmental syndrome.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Masculino , Adulto , Feminino , Humanos , Criança , Pré-Escolar , Transtorno do Espectro Autista/genética , Fator 2 de Elongação de Peptídeos/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Desenvolvimento da Linguagem/genética , Genótipo , Deficiência Intelectual/genética , Fenótipo
6.
Neuroradiology ; 65(2): 401-414, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198887

RESUMO

PURPOSE: There is limited data concerning neuroimaging findings and longitudinal evaluation of familial cerebral cavernous malformations (FCCM) in children. Our aim was to study the natural history of pediatric FCCM, with an emphasis on symptomatic hemorrhagic events and associated clinical and imaging risk factors. METHODS: We retrospectively reviewed all children diagnosed with FCCM in four tertiary pediatric hospitals between January 2010 and March 2022. Subjects with first available brain MRI and [Formula: see text] 3 months of clinical follow-up were included. Neuroimaging studies were reviewed, and clinical data collected. Annual symptomatic hemorrhage risk rates and cumulative risks were calculated using survival analysis and predictors of symptomatic hemorrhagic identified using regression analysis. RESULTS: Forty-one children (53.7% males) were included, of whom 15 (36.3%) presenting with symptomatic hemorrhage. Seven symptomatic hemorrhages occurred during 140.5 person-years of follow-up, yielding a 5-year annual hemorrhage rate of 5.0% per person-year. The 1-, 2-, and 5-year cumulative risks of symptomatic hemorrhage were 7.3%, 14.6%, and 17.1%, respectively. The latter was higher in children with prior symptomatic hemorrhage (33.3%), CCM2 genotype (33.3%), and positive family history (20.7%). Number of brainstem (adjusted hazard ratio [HR] = 1.37, P = 0.005) and posterior fossa (adjusted HR = 1.64, P = 0.004) CCM at first brain MRI were significant independent predictors of prospective symptomatic hemorrhage. CONCLUSION: The 5-year annual and cumulative symptomatic hemorrhagic risk in our pediatric FCCM cohort equals the overall risk described in children and adults with all types of CCM. Imaging features at first brain MRI may help to predict potential symptomatic hemorrhage at 5-year follow-up.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Criança , Feminino , Humanos , Masculino , Hemorragia Cerebral/etiologia , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Hemorragia , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos
7.
Childs Nerv Syst ; 39(5): 1253-1259, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764960

RESUMO

PURPOSE: To present the longitudinal MR imaging of 4 children with an acquired corpus callosum hump, in order to demonstrate graphically that this represents a dysmorphology caused through a constellation of pre-existing pathology, timing, and complications of treatment. MATERIALS AND METHODS: Four cases with a corpus callosum hump were evaluated for common findings in the clinical history and on MRI scans. Those patients with available follow-up imaging were specifically evaluated for the presence of the hump on initial neonatal imaging and for evidence of development and progression of the deformity over time. Corpus callosum length was measured and compared against normal standards. RESULTS AND CONCLUSION: Congenital hydrocephalus, chronic ventricular over-shunting, white matter volume loss, and lateral ventricle communication were common to all cases. Corpus callosum length was above normal values. The corpus callosum hump term was previously described as dysplasia but was not present on initial scans in our cases. We conclude that the corpus callosum hump can be acquired as a complication of over-shunting in children with congenital hydrocephalus. Thus, we present our examples as "acquired hump of the corpus callosum," which differs from the prior example. We postulate that the lengthening of the stretched corpus callosum due to chronic hydrocephalus in the pre-myelinated state renders it unable to return to its normal shape when the ventricles are drained. Over-shunting of both lateral ventricles simultaneously in the absence of a septum pellucidum results in collapse and folding in of the corpus callosum on itself, resulting in the hump.


Assuntos
Corpo Caloso , Hidrocefalia , Criança , Recém-Nascido , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/cirurgia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/cirurgia , Hidrocefalia/patologia , Imageamento por Ressonância Magnética , Derivações do Líquido Cefalorraquidiano , Ventrículos Laterais/patologia
8.
Pediatr Radiol ; 53(7): 1324-1335, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604317

RESUMO

Neuroimaging protocols play an important role in the timely evaluation and treatment of pediatric stroke and its mimics. MRI protocols for stroke in the pediatric population should be guided by the clinical scenario and neurologic examination, with consideration of age, suspected infarct type and underlying risk factors. Acute stroke diagnosis and causes in pediatric age groups can differ significantly from those in adult populations, and delay in stroke diagnosis among children is a common problem. An awareness of pediatric stroke presentations and risk factors among pediatric emergency physicians, neurologists, pediatricians, subspecialists and radiologists is critical to ensuring timely diagnosis. Given special considerations related to unique pediatric stroke risk factors and the need for sedation in some children, expert consensus guidelines for the imaging of suspected pediatric infarct have been proposed. In this article the authors review standard and rapid MRI protocols for the diagnosis of pediatric stroke, as well as the key differences between pediatric and adult stroke imaging.


Assuntos
Acidente Vascular Cerebral , Criança , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Tomografia Computadorizada por Raios X , Infarto
9.
Cerebellum ; 21(1): 116-131, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34052969

RESUMO

Evaluation of ataxia in children is challenging in clinical practice. This is particularly true for highly heterogeneous conditions such as primary mitochondrial disorders (PMD). This study aims to explore cerebellar and brain abnormalities identified on MRI as potential predictors of ataxia in patients with PMD and, likewise, to determine the effect of the patient's genetic profile on these predictors as well as determination of the temporal relationship of clinical ataxia with MRI findings. We evaluated clinical, radiological, and genetic characteristics of 111 PMD patients younger than 21 years of age at The Children's Hospital of Philadelphia. Data was extracted from charts. Blinded radiological evaluations were carried out by experienced neuroradiologists. Multivariate logistic regression and generalized equation estimates were used for analysis. Ataxia was identified in 41% of patients. Cerebellar atrophy or putaminal involvement with mitochondrial DNA (mtDNA) mutations (OR 1.18, 95% CI 1.1-1.3, p < 0.001) and nuclear DNA mutation with no atrophy of the cerebellum (OR 1.14, 95% CI 1.0-1.3, p = 0.007) predicted an increased likelihood of having ataxia per year of age. Central tegmental tract predicted the presence of ataxia independent of age and pathogenic variant origin (OR 9.8, 95% CI 2-74, p = 0.009). Ataxia tended to precede the imaging finding of cerebellar atrophy. Cerebellar atrophy and putaminal involvement on MRI of pediatric-onset PMD may predict the presence of ataxia with age in patients with mtDNA mutations. This study provides predicted probabilities of having ataxia per year of age that may help in family counseling and future research of the population.


Assuntos
Ataxia Cerebelar , Doenças Mitocondriais , Atrofia/patologia , Ataxia Cerebelar/genética , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Criança , Humanos , Imageamento por Ressonância Magnética/métodos , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/genética
10.
Neuroradiology ; 64(8): 1671-1679, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35451625

RESUMO

PURPOSE: The aim of the study was to assess the prevalence and characteristics of spinal cord cavernous malformations (SCCM) and intraosseous spinal vascular malformations (ISVM) in a pediatric familial cerebral cavernous malformation (FCCM) cohort and evaluate clinico-radiological differences between children with (SCCM +) and without (SCCM-) SCCM. METHODS: All patients with a pediatric diagnosis of FCCM evaluated at three tertiary pediatric hospitals between January 2010 and August 2021 with [Formula: see text] 1 whole spine MR available were included. Brain and spine MR studies were retrospectively evaluated, and clinical and genetic data collected. Comparisons between SCCM + and SCCM- groups were performed using student-t/Mann-Whitney or Fisher exact tests, as appropriate. RESULTS: Thirty-one children (55% boys) were included. Baseline spine MR was performed (mean age = 9.7 years) following clinical manifestations in one subject (3%) and as a screening strategy in the remainder. Six SCCM were detected in five patients (16%), in the cervico-medullary junction (n = 1), cervical (n = 3), and high thoracic (n = 2) regions, with one appearing during follow-up. A tendency towards an older age at first spine MR (P = 0.14) and [Formula: see text] 1 posterior fossa lesion (P = 0.13) was observed in SCCM + patients, lacking statistical significance. No subject demonstrated ISVM. CONCLUSION: Although rarely symptomatic, SCCM can be detected in up to 16% of pediatric FCCM patients using diverse spine MR protocols and may appear de novo. ISVM were instead absent in our cohort. Given the relative commonality of asymptomatic SCCM, serial screening spine MR should be considered in FCCM starting in childhood.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Malformações Vasculares , Criança , Feminino , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Retrospectivos , Medula Espinal/patologia , Coluna Vertebral , Síndrome
11.
Neuroradiology ; 63(5): 663-683, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32995945

RESUMO

PURPOSE: Superagers are older adults presenting excellent memory performance that may reflect resilience to the conventional pathways of aging. Our contribution aims to shape the evidence body of the known distinctive biomarkers of superagers and their connections with the Brain and Cognitive Reserve and Brain Maintenance concepts. METHODS: We performed a systematic literature search in PubMed and ScienceDirect with no limit on publication date for studies that evaluated potential biomarkers in superagers classified by validated neuropsychological tests. Methodological quality was assessed using the QUADAS-2 tool. RESULTS: Twenty-one studies were included, the majority in neuroimaging, followed by histological, genetic, cognition, and a single one on blood plasma analysis. Superagers exhibited specific regions of cortical preservation, rather than global cortical maintenance, standing out the anterior cingulate and hippocampus regions. Both superagers and controls showed similar levels of amyloid deposition. Moreover, the functional oscillation patterns in superagers resembled those described in young adults. Most of the quality assessment for the included studies showed medium risks of bias. CONCLUSION: This systematic review supports selective cortical preservation in superagers, comprehending regions of the default mode, and salience networks, overlapped by stronger functional connectivity. In this context, the anterior cingulate cortex is highlighted as an imaging and histologic signature of these subjects. Besides, the biomarkers included pointed out that the Brain and Cognitive Reserve and Brain Maintenance concepts are independent and complementary in the superagers' setting.


Assuntos
Encéfalo , Cognição , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Adulto Jovem
12.
Radiographics ; 40(7): 2042-2067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33136487

RESUMO

Primary mitochondrial disorders (PMDs) constitute the most common cause of inborn errors of metabolism in children, and they frequently affect the central nervous system. Neuroimaging findings of PMDs are variable, ranging from unremarkable and nonspecific to florid and highly suggestive. An overview of PMDs, including a synopsis of the basic genetic concepts, main clinical symptoms, and neuropathologic features, is presented. In addition, eight of the most common PMDs that have a characteristic imaging phenotype in children are reviewed in detail. Online supplemental material is available for this article. ©RSNA, 2020.


Assuntos
Doenças do Sistema Nervoso Central/diagnóstico por imagem , Doenças Mitocondriais/diagnóstico por imagem , Neuroimagem/métodos , Criança , Diagnóstico Diferencial , Humanos , Fenótipo
13.
Childs Nerv Syst ; 36(7): 1507-1513, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31664560

RESUMO

BACKGROUND: Myelomeningocele (MMC) is often related to hydrocephalus and Chiari malformation (CM) type 2; however, other brain abnormalities have been reported in this population. In order to better understand and quantify other forebrain abnormalities, we analyzed magnetic resonance imaging (MRI) of MMC patients treated in utero or postnatal. METHODS: Between January 2014 and March 2017, 59 MMC were treated in our hospital. Thirty-seven patients (32 postnatal and 5 intrautero repair) had brain MRI and were enrolled at the study. MRI was analyzed by two experienced neuroradiologists to identify the supra and infratentorial brain abnormalities. RESULTS: A wide range of brain abnormalities was consistently identified in MMC patients. As expected, the most common were hydrocephalus (94.5%) and CM type II (89.1%). Of note, we found high incidence of corpus callosum abnormalities (86.4%), mostly represented by dysplasia (46%). CONCLUSIONS: The data are consistent with the concept that brain abnormalities related to MMC can be both infratentorial and supratentorial, cortical, and subcortical. More studies are needed to correlate these forebrain abnormalities to long-term functional outcome and their prognostic value for these patients.


Assuntos
Malformação de Arnold-Chiari , Hidrocefalia , Meningomielocele , Malformação de Arnold-Chiari/complicações , Malformação de Arnold-Chiari/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Meningomielocele/complicações , Meningomielocele/diagnóstico por imagem , Estudos Retrospectivos
14.
Pediatr Radiol ; 50(10): 1448-1475, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32642802

RESUMO

This article is the second of a two-part series on intracranial calcification in childhood. In Part 1, the authors discussed the main differences between physiological and pathological intracranial calcification. They also outlined histological intracranial calcification characteristics and how these can be detected across different neuroimaging modalities. Part 1 emphasized the importance of age at presentation and intracranial calcification location and proposed a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Pathological intracranial calcification can be divided into infectious, congenital, endocrine/metabolic, vascular, and neoplastic. In Part 2, the chief focus is on discussing endocrine/metabolic, vascular, and neoplastic intracranial calcification etiologies of intracranial calcification. Endocrine/metabolic diseases causing intracranial calcification are mainly from parathyroid and thyroid dysfunction and inborn errors of metabolism, such as mitochondrial disorders (MELAS, or mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes; Kearns-Sayre; and Cockayne syndromes), interferonopathies (Aicardi-Goutières syndrome), and lysosomal disorders (Krabbe disease). Specific noninfectious causes of intracranial calcification that mimic TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus, and herpes) infections are known as pseudo-TORCH. Cavernous malformations, arteriovenous malformations, arteriovenous fistulas, and chronic venous hypertension are also known causes of intracranial calcification. Other vascular-related causes of intracranial calcification include early atherosclerosis presentation (children with risk factors such as hyperhomocysteinemia, familial hypercholesterolemia, and others), healed hematoma, radiotherapy treatment, old infarct, and disorders of the microvasculature such as COL4A1- and COL4A2-related diseases. Intracranial calcification is also seen in several pediatric brain tumors. Clinical and familial information such as age at presentation, maternal exposure to teratogens including viruses, and association with chromosomal abnormalities, pathogenic genes, and postnatal infections facilitates narrowing the differential diagnosis of the multiple causes of intracranial calcification.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/etiologia , Calcinose/diagnóstico por imagem , Calcinose/etiologia , Neuroimagem/métodos , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
15.
Pediatr Radiol ; 50(10): 1424-1447, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32734340

RESUMO

This article is the first of a two-part series on intracranial calcification in childhood. Intracranial calcification can be either physiological or pathological. Physiological intracranial calcification is not an expected neuroimaging finding in the neonatal or infantile period but occurs, as children grow older, in the pineal gland, habenula, choroid plexus and occasionally the dura mater. Pathological intracranial calcification can be broadly divided into infectious, congenital, endocrine/metabolic, vascular and neoplastic. The main goals in Part 1 are to discuss the chief differences between physiological and pathological intracranial calcification, to discuss the histological characteristics of intracranial calcification and how intracranial calcification can be detected across neuroimaging modalities, to emphasize the importance of age at presentation and intracranial calcification location, and to propose a comprehensive neuroimaging approach toward the differential diagnosis of the causes of intracranial calcification. Finally, in Part 1 the authors discuss the most common causes of infectious intracranial calcification, especially in the neonatal period, and congenital causes of intracranial calcification. Various neuroimaging modalities have distinct utilities and sensitivities in the depiction of intracranial calcification. Age at presentation, intracranial calcification location, and associated neuroimaging findings are useful information to help narrow the differential diagnosis of intracranial calcification. Intracranial calcification can occur in isolation or in association with other neuroimaging features. Intracranial calcification in congenital infections has been associated with clastic changes, hydrocephalus, chorioretinitis, white matter abnormalities, skull changes and malformations of cortical development. Infections are common causes of intracranial calcification, especially neonatal TORCH (toxoplasmosis, other [syphilis, varicella-zoster, parvovirus B19], rubella, cytomegalovirus and herpes) infections.


Assuntos
Encefalopatias/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Calcificação Fisiológica , Calcinose/diagnóstico por imagem , Neuroimagem/métodos , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
16.
Neuroradiology ; 60(1): 89-99, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29128947

RESUMO

PURPOSE: The role of T2*-based MR imaging in intracranial germ cell tumors (GCTs) has not been fully elucidated. The aim of this study was to evaluate the susceptibility-weighted imaging (SWI) or T2* gradient echo (GRE) features of germinomas and non-germinomatous germ cell tumors (NGGCTs) in midline and off-midline locations. METHODS: We retrospectively evaluated all consecutive pediatric patients referred to our institution between 2005 and 2016, for newly diagnosed, treatment-naïve intracranial GCT, who underwent MRI, including T2*-based MR imaging (T2* GRE sequences or SWI). Standard pre- and post-contrast T1- and T2-weighted imaging characteristics along with T2*-based MR imaging features of all lesions were evaluated. Diagnosis was performed in accordance with the SIOP CNS GCT protocol criteria. RESULTS: Twenty-four subjects met the inclusion criteria (17 males and 7 females). There were 17 patients with germinomas, including 5 basal ganglia primaries, and 7 patients with secreting NGGCT. All off-midline germinomas presented with SWI or GRE hypointensity; among midline GCT, all NGGCTs showed SWI or GRE hypointensity whereas all but one pure germinoma were isointense or hyperintense to normal parenchyma. A significant difference emerged on T2*-based MR imaging among midline germinomas, NGGCTs, and off-midline germinomas (p < 0.001). CONCLUSION: Assessment of the SWI or GRE characteristics of intracranial GCT may potentially assist in differentiating pure germinomas from NGGCT and in the characterization of basal ganglia involvement. T2*-based MR imaging is recommended in case of suspected intracranial GCT.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Germinoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Neoplasias Encefálicas/patologia , Criança , Meios de Contraste , Feminino , Germinoma/patologia , Humanos , Masculino , Projetos Piloto , Estudos Retrospectivos
19.
J Stroke Cerebrovasc Dis ; 25(1): 144-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597265

RESUMO

BACKGROUND: More insights in the etiopathogenesis of thrombi could be helpful in the treatment of patients with acute ischemic stroke (AIS). One of the most confident and early imaging findings of stroke includes arterial hyperdensity. The purpose of this study was to determine whether thrombi's density and length would be useful for predicting their origin. METHODS: We evaluated 68 consecutive patients with AIS to correlate the presence of thrombi and their imaging features with the stroke subtype. RESULTS: After excluding patients with small-artery occlusion mechanism and undetermined and other causes, the stroke etiologic subtypes were large-artery atherosclerosis (LAA) in 59.0% of the patients, cardioembolism in 31.0%, and cervical artery dissection (CAD) in 10.0%. CAD more often caused thrombi with the longest length and highest attenuation, while thrombi that originated from the LAA had the smallest length and lowest attenuation. The mean Hounsfield unit (HU) values of all thrombi (with and without hyperdensity) on noncontrast computed tomography were 62.4 (50.0-70.0) in CAD, 53.8 (42.0-65.0) in cardioembolism, and 48.6 (27.0-65.0) in LAA. The length measurements were 28.5 mm (12.0-52.0) in CAD, 13.7 mm (5.0-31.0) in cardioembolism, and 10.8 mm (3.0-25.0) in the LAA subtype. The minimum cutoff value of 60 HU and a length greater than 20 mm were able to discriminate the CAD thrombi with an accuracy of 86.8% and 92.6%, respectively. CONCLUSION: Our study findings show how important thrombus analysis is in patients with AIS. Thrombus analysis can allow early suspicion of CAD before dedicated imaging of the cervical arteries is performed.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Doença Aguda , Idoso , Dissecção Aórtica/complicações , Dissecção Aórtica/patologia , Angiografia Cerebral , Feminino , Humanos , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/etiologia , Arteriosclerose Intracraniana/complicações , Arteriosclerose Intracraniana/patologia , Embolia Intracraniana/complicações , Embolia Intracraniana/patologia , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Curva ROC , Método Simples-Cego
20.
Neurotherapeutics ; 21(1): e00324, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38306952

RESUMO

Mitochondrial diseases, a diverse and intricate group of disorders, result from both nuclear DNA and mitochondrial DNA malfunctions, leading to a decrease in cellular energy (ATP) production. The increasing understanding of molecular, biochemical, and genetic irregularities associated with mitochondrial dysfunction has led to a wider recognition of varying mitochondrial disease phenotypes. This broadening landscape has led to a diverse array of neuroimaging findings, posing a challenge to radiologists in identifying the extensive range of possible patterns. This review meticulously describes the central imaging features of mitochondrial diseases in children, as revealed by neuroimaging. It spans from traditional imaging findings to more recent and intricate diagnoses, offering insights and highlighting advancements in neuroimaging technology that can potentially guide a more efficient and accurate diagnostic approach.


Assuntos
Doenças Mitocondriais , Criança , Humanos , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Mitocôndrias , Neuroimagem/métodos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA