Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(5): 1960-1969, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36604603

RESUMO

Increasing evidence supports a relationship between lipid metabolism and mental health. In particular, the biostatus of polyunsaturated fatty acids (PUFAs) correlates with some symptoms of psychiatric disorders, as well as the efficacy of pharmacological treatments. Recent findings highlight a direct association between brain PUFA levels and dopamine transmission, a major neuromodulatory system implicated in the etiology of psychiatric symptoms. However, the mechanisms underlying this relationship are still unknown. Here we demonstrate that membrane enrichment in the n-3 PUFA docosahexaenoic acid (DHA), potentiates ligand binding to the dopamine D2 receptor (D2R), suggesting that DHA acts as an allosteric modulator of this receptor. Molecular dynamics simulations confirm that DHA has a high preference for interaction with the D2R and show that membrane unsaturation selectively enhances the conformational dynamics of the receptor around its second intracellular loop. We find that membrane unsaturation spares G protein activity but potentiates the recruitment of ß-arrestin in cells. Furthermore, in vivo n-3 PUFA deficiency blunts the behavioral effects of two D2R ligands, quinpirole and aripiprazole. These results highlight the importance of membrane unsaturation for D2R activity and provide a putative mechanism for the ability of PUFAs to enhance antipsychotic efficacy.

2.
Bioconjug Chem ; 34(11): 2014-2021, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556437

RESUMO

The neuropeptide-Y (NPY) family acts through four G protein-coupled receptor subtypes in humans, namely, Y1, Y2, Y4, and Y5. A growing body of evidence suggest the involvement of the NPY system in several cancers, notably the Y5 subtype, thus acting as a relevant target for the development of radiopharmaceuticals for imaging or targeted radionuclide therapy (TRT). Here, the [cPP(1-7),NPY(19-23),Ala31,Aib32,Gln34]hPP scaffold, further referred to as sY5ago, was modified with a DOTA chelator and radiolabeled with 68Ga and 111In and investigated in vitro and in vivo using the MCF-7 model. For in vivo studies, MCF-7 cells were orthotopically implanted in female nude mice and imaging with small animal positron emission tomography/computed tomography (µPET/CT) was performed. At the end of imaging, the mice were sacrificed. A scrambled version of sY5ago, which was also modified with a DOTA chelator, served as a negative control (DOTA-[Nle]sY5ago_scrambled). sY5ago and DOTA-sY5ago showed subnanomolar affinity toward the Y5 (0.9 ± 0.1 and 0.8 ± 0.1 nM, respectively) and a single binding site at the Y5 was identified. [68Ga]Ga-DOTA-sY5ago and [111In]In-DOTA-sY5ago were hydrophilic and showed high specific internalization (1.61 ± 0.75%/106 cells at 1 h) and moderate efflux (55% of total binding externalized at 45 min). On µPET/CT images, most of the signal was depicted in the kidneys and the liver. MCF-7 tumors were clearly visualized. On biodistribution studies, [68Ga]Ga-DOTA-sY5ago was eliminated by the kidneys (∼60 %ID/g). The kidney uptake is Y5-mediated. A specific uptake was also noted in the liver (5.09 ± 1.15 %ID/g vs 1.13 ± 0.21 %ID/g for [68Ga]Ga-DOTA-[Nle]sY5ago_scrambled, p < 0.05), the lungs (1.03 ± 0.34 %ID/g vs 0.20 %ID/g, p < 0.05), and the spleen (0.85 ± 0.09%ID/g vs 0.16 ± 0.16%ID/g, p < 0.05). In MCF-7 tumors, [68Ga]Ga-DOTA-sY5ago showed 12-fold higher uptake than [68Ga]Ga-DOTA-[Nle]sY5ago_scrambled (3.43 ± 2.32 vs 0.27 ± 0.15 %ID/g, respectively, p = 0.0008) at 1 h post-injection. Finally, a proof-of-principle tissular micro-imaging study on a human primary cancer sample showed weak binding of [111In]In-DOTA-sY5ago in prostatic intra-neoplasia and high binding in the ISUP1 lesion while normal prostate was free of signal.


Assuntos
Neoplasias da Próstata , Receptores de Neuropeptídeo Y , Masculino , Camundongos , Humanos , Animais , Receptores de Neuropeptídeo Y/metabolismo , Compostos Radiofarmacêuticos , Radioisótopos de Gálio , Camundongos Nus , Distribuição Tecidual , Quelantes , Tomografia por Emissão de Pósitrons/métodos
3.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770851

RESUMO

Plasmon waveguide resonance (PWR) is a variant of surface plasmon resonance (SPR) that was invented about two decades ago at the University of Arizona. In addition to the characterization of the kinetics and affinity of molecular interactions, PWR possesses several advantages relative to SPR, namely, the ability to monitor both mass and structural changes. PWR allows anisotropy information to be obtained and is ideal for the investigation of molecular interactions occurring in anisotropic-oriented thin films. In this review, we will revisit main PWR applications, aiming at characterizing molecular interactions occurring (1) at lipid membranes deposited in the sensor and (2) in chemically modified sensors. Among the most widely used applications is the investigation of G-protein coupled receptor (GPCR) ligand activation and the study of the lipid environment's impact on this process. Pioneering PWR studies on GPCRs were carried out thanks to the strong and effective collaboration between two laboratories in the University of Arizona leaded by Dr. Gordon Tollin and Dr. Victor J. Hruby. This review provides an overview of the main applications of PWR and provides a historical perspective on the development of instruments since the first prototype and continuous technological improvements to ongoing and future developments, aiming at broadening the information obtained and expanding the application portfolio.


Assuntos
Desenho de Equipamento/história , Ressonância de Plasmônio de Superfície , História do Século XX , Ressonância de Plasmônio de Superfície/história , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos
4.
Acc Chem Res ; 52(4): 1059-1067, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30865424

RESUMO

Here we describe an experimental technique, termed plasmon waveguide resonance (PWR) spectroscopy that enables the characterization of molecular interactions occurring at the level of anisotropic thin films as lipid membranes and therein inserted or interacting molecules. PWR allows one to characterize such molecular interactions at different levels: (1) acquire binding curves and calculate dissociation constants; (2) obtain kinetic information; (3) obtain information about associated anisotropy changes and changes in membrane thickness; (4) obtain insight about lateral homogeneity (formation of domains). Points 1, 2, and 4 can be directly obtained from the data. Point 3 requires spectral fitting procedures so that the different optical parameters characterizing thin films as proteolipid membranes, namely refractive index and extinction coefficient for both p- (TM component of light that is parallel to the incident light) and s- (TE component of light that is perpendicular to the incident light) polarizations and thickness, can be determined. When applied to membrane proteins as the G-protein coupled receptor (GPCR) family, both ligand-induced conformational changes of the receptor can be followed as well as interactions with effectors (e.g., G-proteins). Additionally, by either altering the lipid composition in cellular membranes or specifically controlling its composition in the case of lipid model membranes with reconstituted proteins, the role of the lipid environment in receptor activation and signaling can be determined. Additionally, the eventual partition of receptors in different lipid microdomains (e.g., lipid rafts) can be followed. Such information can be obtained  ex cellulo with mammalian cell membrane fragments expressing the protein of interest and/or in vitro with lipid model systems where the protein under investigation has been reconstituted. Moreover, PWR can also be applied to directly follow the reconstitution of membrane proteins in lipid model membranes. The measurements are performed directly (no labeling of molecular partners), in real time and with very high sensitivity. Here we will discuss different aspects of GPCR activation and signaling where PWR brought important information in parallel with other approaches. The utility of PWR is not limited to GPCRs but can be applied to any membrane protein. PWR is also an excellent tool to characterize the interaction of membrane active molecules (as cell penetrating, antimicrobial, viral and amyloid peptides) with lipids. A brief section is dedicated to such applications, with particular emphasis on amyloid peptides. To finalize, as PWR is a homemade technology, ongoing instrument developments aiming at breaking current experimental limitations are briefly discussed, namely, the coupling of PWR with electrochemical measurements and the expansion of measurements from the visible to the infrared region.


Assuntos
Bicamadas Lipídicas/química , Receptores Acoplados a Proteínas G/química , Ressonância de Plasmônio de Superfície , Humanos , Ligantes , Bicamadas Lipídicas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores CXCR3/química , Receptores CXCR3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
5.
Opt Express ; 27(3): 3264-3275, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732350

RESUMO

This paper describes a simple procedure to determine the local thickness of a thin anisotropic layer. It also discriminates between isotropic and anisotropic regions, provided a smoothness hypothesis on the refractive index distribution is satisfied. The procedure is based on the analysis of surface plasmon resonance (SPR) data acquired in an imaging mode. The general arrangement of the setup is the Kretschmann configuration. We show, on an azobenzene modified polymer layer, good agreement between atomic force microscopy and optical measurements of thickness variation.

7.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901964

RESUMO

Plasmon waveguide resonance (PWR) sensors exhibit narrow resonances at the two orthogonal polarizations, transverse electric (TE) and transverse magnetic (TM), which are narrower by almost an order of a magnitude than the standard surface plasmon resonance (SPR), and thus the figure of merit is enhanced. This fact is useful for measuring optical anisotropy of materials on the surface and determining the orientation of molecules with high resolution. Using the diverging beam approach and a liquid crystal retarder, we present experimental results by simultaneous detection of TE and TM polarized resonances as well as using fast higher contrast serial detection with a variable liquid crystal retarder. While simultaneous detection makes the system simpler, a serial one has the advantage of obtaining a larger contrast of the resonances and thus an improved signal-to-noise ratio. Although the sensitivity of the PWR resonances is smaller than the standard SPR, the angular width is much smaller, and thus the figure of merit is improved. When the measurement methodology has a high enough angular resolution, as is the one presented here, the PWR becomes advantageous over other SPR modes. The possibility of carrying out exact numerical simulations for anisotropic molecules using the 4 × 4 matrix approach brings another advantage of the PWR over SPR on the possibility of extracting the orientation of molecules adsorbed to the surface. High sensitivity of the TE and TM signals to the anisotropic molecules orientation is found here, and comparison to the experimental data allowed detection of the orientation of lipids on the sensor surface. The molecular orientations cannot be fully determined from the TM polarization alone as in standard SPR, which underlines the additional advantage of the PWR technique.

8.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505894

RESUMO

Cell-penetrating peptides (CPPs) are short peptides that can translocate and transport cargoes into the intracellular milieu by crossing biological membranes. The mode of interaction and internalization of cell-penetrating peptides has long been controversial. While their interaction with anionic membranes is quite well understood, the insertion and behavior of CPPs in zwitterionic membranes, a major lipid component of eukaryotic cell membranes, is poorly studied. Herein, we investigated the membrane insertion of RW16 into zwitterionic membranes, a versatile CPP that also presents antibacterial and antitumor activities. Using complementary approaches, including NMR spectroscopy, fluorescence spectroscopy, circular dichroism, and molecular dynamic simulations, we determined the high-resolution structure of RW16 and measured its membrane insertion and orientation properties into zwitterionic membranes. Altogether, these results contribute to explaining the versatile properties of this peptide toward zwitterionic lipids.


Assuntos
Membrana Celular/química , Peptídeos Penetradores de Células/química , Arginina/química , Dicroísmo Circular , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
9.
Angew Chem Int Ed Engl ; 56(28): 8226-8230, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28485523

RESUMO

Penetratin (RQIKIWFQNRRMKWKK) enters cells by different mechanisms, including membrane translocation, thus implying that the peptide interacts with the lipid bilayer. Penetratin also crosses the membrane of artificial vesicles, depending on their phospholipid content. To evaluate the phospholipid preference of penetratin, as the first step of translocation, we exploited the benzophenone triplet kinetics of hydrogen abstraction, which is slower for secondary than for allylic hydrogen atoms. By using multilamellar vesicles of varying phospholipid content, we identified and characterized the cross-linked products by MALDI-TOF mass spectrometry. Penetratin showed a preference for negatively charged (vs. zwitterionic) polar heads, and for unsaturated (vs. saturated) and short (vs. long) saturated phospholipids. Our study highlights the potential of using benzophenone to probe the environment and insertion depth of membranotropic peptides in membranes.

10.
Biochim Biophys Acta ; 1848(2): 593-602, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445669

RESUMO

Cell-penetrating peptides (CPP) are able to efficiently transport cargos across cell membranes without being cytotoxic to cells, thus present a great potential in drug delivery and diagnosis. While the role of cationic residues in CPPs has been well studied, that of Trp is still not clear. Herein 7 peptide analogs of RW9 (RRWWRRWRR, an efficient CPP) were synthesized in which Trp were systematically replaced by Phe residues. Quantification of cellular uptake reveals that substitution of Trp by Phe strongly reduces the internalization of all peptides despite the fact that they strongly accumulate in the cell membrane. Cellular internalization and biophysical studies show that not only the number of Trp residues but also their positioning in the helix and the size of the hydrophobic face they form are important for their internalization efficacy, the highest uptake occurring for the analog with 3 Trp residues. Using CD and ATR-FTIR spectroscopy we observe that all peptides became structured in contact with lipids, mainly in α-helix. Intrinsic tryptophan fluorescence studies indicate that all peptides partition in the membrane in about the same manner (Kp~10(5)) and that they are located just below the lipid headgroups (~10 Å) with slightly different insertion depths for the different analogs. Plasmon Waveguide Resonance studies reveal a direct correlation between the number of Trp residues and the reversibility of the interaction following membrane washing. Thus a more interfacial location of the CPP renders the interaction with the membrane more adjustable and transitory enhancing its internalization ability.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Triptofano/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Células CHO , Membrana Celular/química , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Cricetulus , Humanos , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Fenilalanina/química , Ligação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Eletricidade Estática , Relação Estrutura-Atividade
11.
Biochim Biophys Acta ; 1848(5): 1147-56, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687973

RESUMO

The transient receptor potential ankyrin 1 channel (TRPA1) belongs to the TRP cation channel superfamily that responds to a panoply of stimuli such as changes in temperature, calcium levels, reactive oxygen and nitrogen species and lipid mediators among others. The TRP superfamily has been implicated in diverse pathological states including neurodegenerative disorders, kidney diseases, inflammation, pain and cancer. The intracellular C-terminus is an important regulator of TRP channel activity. Studies with this and other TRP superfamily members have shown that the C-terminus association with lipid bilayer alters channel sensitivity and activation, especially interactions occurring through basic residues. Nevertheless, it is not yet clear how this process takes place and which regions in the C-terminus would be responsible for such membrane recognition. With that in mind, herein the first putative membrane interacting region of the C-terminus of human TRPA1, (corresponding to a 29 residue peptide, IAEVQKHASLKRIAMQVELHTSLEKKLPL) named H1 due to its potential helical character was chosen for studies of membrane interaction. The affinity of H1 to lipid membranes, H1 structural changes occurring upon this interaction as well as effects of this interaction in lipid organization and integrity were investigated using a biophysical approach. Lipid models systems composed of zwitterionic and anionic lipids, namely those present in the lipid membrane inner leaflet, where H1 is prone to interact, where used. The study reveals a strong interaction and affinity of H1 as well as peptide structuration especially with membranes containing anionic lipids. Moreover, the interactions and peptide structure adoption are headgroup specific.


Assuntos
Canais de Cálcio/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Membranas Artificiais , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Anisotropia , Soluções Tampão , Canais de Cálcio/química , Membrana Celular/química , Humanos , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/química , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Transição de Fase , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/química
12.
Biochim Biophys Acta ; 1838(8): 2026-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24746450

RESUMO

Biological membranes represent a physical barrier that most viruses have to cross for replication. While enveloped viruses cross membranes through a well-characterized membrane fusion mechanism, non-enveloped viruses, such as rotaviruses, require the destabilization of the host cell membrane by processes that are still poorly understood. We have identified, in the C-terminal region of the rotavirus glycoprotein VP7, a peptide that was predicted to contain a membrane domain and to fold into an amphipathic α-helix. Its structure was confirmed by circular dichroism in media mimicking the hydrophobic environment of the membrane at both acidic and neutral pHs. The helical folding of the peptide was corroborated by ATR-FTIR spectroscopy, which suggested a transmembrane orientation of the peptide. The interaction of this peptide with artificial membranes and its affinity were assessed by plasmon waveguide resonance. We have found that the peptide was able to insert into membranes and permeabilize them while the native protein VP7 did not. Finally, NMR studies revealed that in a hydrophobic environment, this helix has amphipathic properties characteristic of membrane-perforating peptides. Surprisingly, its structure varies from that of its counterpart in the structure of the native protein VP7, as was determined by X-ray. All together, our results show that a peptide released from VP7 is capable of changing its conformation and destabilizing artificial membranes. Such peptides could play an important role by facilitating membrane crossing by non-enveloped viruses during cell infection.


Assuntos
Antígenos Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Permeabilidade da Membrana Celular , Membranas Artificiais , Fragmentos de Peptídeos/metabolismo , Antígenos Virais/química , Proteínas do Capsídeo/química , Dicroísmo Circular , Biologia Computacional , Espectroscopia de Ressonância Magnética , Micelas , Fragmentos de Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biochim Biophys Acta ; 1838(1 Pt B): 287-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036080

RESUMO

The biomembrane surrounding rubber particles from the hevea latex is well known for its content of numerous allergen proteins. HbREF (Hevb1) and HbSRPP (Hevb3) are major components, linked on rubber particles, and they have been shown to be involved in rubber synthesis or quality (mass regulation), but their exact function is still to be determined. In this study we highlighted the different modes of interactions of both recombinant proteins with various membrane models (lipid monolayers, liposomes or supported bilayers, and multilamellar vesicles) to mimic the latex particle membrane. We combined various biophysical methods (polarization-modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS)/ellipsometry, attenuated-total reflectance Fourier-transform infrared (ATR-FTIR), solid-state nuclear magnetic resonance (NMR), plasmon waveguide resonance (PWR), fluorescence spectroscopy) to elucidate their interactions. Small rubber particle protein (SRPP) shows less affinity than rubber elongation factor (REF) for the membranes but displays a kind of "covering" effect on the lipid headgroups without disturbing the membrane integrity. Its structure is conserved in the presence of lipids. Contrarily, REF demonstrates higher membrane affinity with changes in its aggregation properties, the amyloid nature of REF, which we previously reported, is not favored in the presence of lipids. REF binds and inserts into membranes. The membrane integrity is highly perturbed, and we suspect that REF is even able to remove lipids from the membrane leading to the formation of mixed micelles. These two homologous proteins show affinity to all membrane models tested but neatly differ in their interacting features. This could imply differential roles on the surface of rubber particles.


Assuntos
Antígenos de Plantas/química , Bicamadas Lipídicas/química , Lipossomos/química , Proteínas de Plantas/química , Borracha/química , Alérgenos/química , Hevea/química , Látex/química , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ressonância de Plasmônio de Superfície
14.
Biochim Biophys Acta ; 1838(8): 2087-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796502

RESUMO

The peptide KLA (acetyl-(KLAKLAK)2-NH2), which is rather non toxic for eukaryotic cell lines, becomes active when coupled to the cell penetrating peptide, penetratin (Pen), by a disulfide bridge. Remarkably, the conjugate KLA-Pen is cytotoxic, at low micromolar concentrations, against a panel of seven human tumor cell lines of various tissue origins, including cells resistant to conventional chemotherapy agents but not to normal human cell lines. Live microscopy on cells possessing fluorescent labeled mitochondria shows that in tumor cells, KLA-Pen had a strong impact on mitochondria tubular organization instantly resulting in their aggregation, while the unconjugated KLA and pen peptides had no effect. But, mitochondria in various normal cells were not affected by KLA-Pen. The interaction with membrane models of KLA-Pen, KLA and penetratin were studied using dynamic light scattering, calorimetry, plasmon resonance, circular dichroism and ATR-FTIR to unveil the mode of action of the conjugate. To understand the selectivity of the conjugate towards tumor cell lines and its action on mitochondria, lipid model systems composed of zwitterionic lipids were used as mimics of normal cell membranes and anionic lipids as mimics of tumor cell and mitochondria membrane. A very distinct mode of interaction with the two model systems was observed. KLA-Pen may exert its deleterious and selective action on cancer cells by the formation of pores with an oblique membrane orientation and establishment of important hydrophobic interactions. These results suggest that KLA-Pen could be a lead compound for the design of cancer therapeutics.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Neoplasias/patologia , Peptídeos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Varredura Diferencial de Calorimetria , Peptídeos Penetradores de Células , Dicroísmo Circular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lipossomos , Lipídeos de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Células Tumorais Cultivadas
15.
Biomacromolecules ; 16(3): 944-50, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25689632

RESUMO

The toxicity of amyloids, as Aß(1-42) involved in Alzheimer disease, is a subject under intense scrutiny. Many studies link their toxicity to the existence of various intermediate structures prior to fiber formation and/or their specific interaction with membranes. In this study we focused on the interaction between membrane models and Aß(1-42) peptides and variants (L34T, mG37C) produced in E. coli and purified in monomeric form. We evaluated the interaction of a toxic stable oligomeric form (oG37C) with membranes as comparison. Using various biophysical techniques as fluorescence and plasmon waveguide resonance, we clearly established that the oG37C interacts strongly with membranes leading to its disruption. All the studied peptides destabilized liposomes and accumulated slowly on the membrane (rate constant 0.02 min(-1)). Only the oG37C exhibited a particular pattern of interaction, comprising two steps: the initial binding followed by membrane reorganization. Cryo-TEM was used to visualize the peptide effect on liposome morphologies. Both oG37C and mG37C lead to PG membrane fragmentation. The PG membrane promotes peptide oligomerization, implicated in membrane disruption. WT (Aß(1-42)) also perturbs liposome organization with membrane deformation rather than disruption. For all the peptides studied, their interaction with the membranes changes their fibrillization process, with less fibers and more small aggregates being formed. These studies allowed to establish, a correlation between toxicity, fiber formation, and membrane disruption.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Permeabilidade da Membrana Celular , Cinética , Multimerização Proteica , Lipossomas Unilamelares/química
16.
Biochim Biophys Acta ; 1828(2): 824-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174351

RESUMO

Cell penetrating peptides (CPPs) are able to cross membranes without using receptors but only little information about the underlying mechanism is available. In this work, we investigate the interaction of the two arginine-rich CPPs RW9 and RL9 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), and POPC/POPG membranes with varying POPG content using isothermal titration calorimetry (ITC), solid-state nuclear magnetic resonance (NMR) spectroscopy, and molecular dynamics (MD) simulations. Both peptides were derived from the known CPP penetratin and it was shown previously that RW9 is able to penetrate membranes better than RL9. Overall, the results show that both RW9 and RL9 have a relatively small influence on the membrane. They increase the order of the lipids in the headgroup region and reduce order in the acyl chains indicating that they are located in the lipid/water interface. In addition, the flexibility of the membrane is slightly increased by both peptides but RW9 has a larger influence than RL9. The differences observed in the influences on POPC and POPG as well as MD simulations on the mixed POPC/POPG bilayers of 850ns length each show that both peptides preferentially associate with and enrich the charged PG lipids almost 2fold in an area of 12Å around the peptides. As expected, we could not observe any membrane crossing on the simulation time scale of 850ns but observed that some peptides flipped their orientation during binding to the membrane. Interestingly, all observed flips coincided with structural changes in the peptides indicating that structural changes or flexibility might play a role during the binding of arginine-rich CPPs to membranes.


Assuntos
Arginina/química , Biofísica/métodos , Peptídeos Penetradores de Células/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Calorimetria/métodos , Lipídeos/química , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Fosfolipídeos/química , Ligação Proteica , Água/química
17.
Biochim Biophys Acta ; 1828(6): 1457-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462641

RESUMO

Cell penetrating peptides (CPPs) are usually short, highly cationic peptides that are capable of crossing the cell membrane and transport cargos of varied size and nature in cells by energy- and receptor-independent mechanisms. An additional potential is the newly discovered anti-tumor activity of certain CPPs, including RW16 (RRWRRWWRRWWRRWRR) which is derived from penetratin and is investigated here. The use of CPPs in therapeutics, diagnosis and potential application as anti-tumor agents increases the necessity of understanding their mode of action, a subject yet not totally understood. With this in mind, the membrane interaction and perturbation mechanisms of RW16 with both zwitterionic and anionic lipid model systems (used as representative models of healthy vs tumor cells) were investigated using a large panoply of biophysical techniques. It was shown that RW16 autoassociates and that its oligomerization state highly influences its membrane interaction. Overall a stronger association and perturbation of anionic membranes was observed, especially in the presence of oligomeric peptide, when compared to zwitterionic ones. This might explain, at least in part, the anti-tumor activity and so the selective interaction with cancer cells whose membranes have been shown to be especially anionic. Hydrophobic contacts between the peptide and lipids were also shown to play an important role in the interaction. That probably results from the tryptophan insertion into the fatty acid lipid area following a peptide flip after the first electrostatic recognition. A model is presented that reflects the ensemble of results.


Assuntos
Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Permeabilidade da Membrana Celular , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Lipídeos de Membrana/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipossomos , Testes de Sensibilidade Microbiana , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Triptofano
18.
FASEB J ; 27(2): 738-49, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23070606

RESUMO

Deciphering the structural requirements and mechanisms for internalization of cell-penetrating peptides (CPPs) is required to improve their delivery efficiency. Herein, a unique role of tryptophan (Trp) residues in the interaction and structuring of cationic CPP sequences with glycosaminoglycans (GAGs) has been characterized, in relation with cell internalization. Using isothermal titration calorimetry, circular dichroism, NMR, mass spectrometry, and phase-contrast microscopy, we compared the interaction of 7 basic CPPs with 5 classes of GAGs. We found that the affinity of CPPs for GAGs increases linearly with the number of Trp residues, from 30 nM for a penetratin analog with 1 Trp residue to 1.5 nM for a penetratin analog with 6 Trp residues for heparin (HI); peptides with Trp residues adopt a predominantly ß-strand structure in complex with HI and form large, stable ß-sheet aggregates with GAGs; and in the absence of any cytotoxicity effect, the quantity of peptide internalized into CHO cells increased 2 times with 1 Trp residue, 10 times with 2 Trp residues, and 20 times with 3 Trp residues, compared with +6 peptides with no Trp residues. Therefore, Trp residues represent molecular determinants in basic peptide sequences not only for direct membrane translocation but also for efficient endocytosis through GAGs.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Endocitose/fisiologia , Glicosaminoglicanos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Transporte Biológico Ativo , Células CHO , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/genética , Cricetinae , Cricetulus , Glicosaminoglicanos/química , Modelos Biológicos , Dados de Sequência Molecular , Estrutura Molecular , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Termodinâmica , Triptofano/química
19.
Biochim Biophys Acta ; 1818(7): 1755-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22402267

RESUMO

Cell penetrating peptides (CPPs) can cross cell membranes in a receptor independent manner and transport cargo molecules inside cells. These peptides can internalize through two independent routes: energy dependent endocytosis and energy independent translocation across the membrane, but the exact mechanisms are still unknown. The interaction of the CPP with different membrane components is certainly a preliminary key point that triggers internalization, such as the interaction with lipids to lead to the translocation process. In this study, we used two arginine-rich peptides, RW9 (RRWWRRWRR-NH2), which is a potent CPP, and RL9 (RRLLRRLRR-NH2) that, although binding tightly and accumulating on membranes, does not enter into cells. Using a set of experimental and theoretical techniques, we studied the binding, insertion and orientation of the peptides into different model membranes as well as the subsequent membrane reorganization. Herein we show that although the two peptides had rather similar behavior regarding lipid membrane interaction, subtle differences were found concerning the depth of peptide insertion, effect on the lipid chain ordering and kinetics of peptide insertion in the membrane, which altogether might explain their different cell internalization capacities. Molecular dynamics simulation studies show that some peptide molecules flipped their orientation over the course of the simulation such that the hydrophobic residues penetrated deeper in the lipid core region while Arg-residues maintained H-bonds with the lipid headgroups, serving as a molecular hinge in a conformation that appeared to correspond to the equilibrium one.


Assuntos
Arginina/química , Membrana Celular/química , Peptídeos Penetradores de Células/química , Lipídeos de Membrana/química , Sequência de Aminoácidos , Arginina/metabolismo , Calorimetria , Membrana Celular/metabolismo , Peptídeos Penetradores de Células/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Endocitose , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/metabolismo , Micelas , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Transporte Proteico , Refratometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
20.
Biochim Biophys Acta ; 1818(3): 448-57, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22182801

RESUMO

Glycosylated cell penetrating peptides (CPPs) have been conjugated to a peptide cargo and the efficiency of cargo delivery into wild type Chinese hamster ovary (CHO) and proteoglycan deficient CHO cells has been quantified by MALDI-TOF mass spectrometry and compared to tryptophan- or alanine containing CPPs. In parallel, the behavior of these CPPs in contact with model membranes has been characterized by different biophysical techniques: Differential Scanning and Isothermal Titration Calorimetries, Imaging Ellipsometry and Attenuated Total Reflectance IR spectroscopy. With these CPPs we have demonstrated that tryptophan residues play a key role in the insertion of a CPP and its conjugate into the membrane: galactosyl residues hampered the internalization when introduced in the middle of the amphipathic secondary structure of a CPP but not when added to the N-terminus, as long as the tryptophan residues were still present in the sequence. The insertion of these CPPs into membrane models was enthalpy driven and was related to the number of tryptophans in the sequence of these secondary amphipathic CPPs. Additionally, we have observed a certain propensity of the investigated CPP analogs to aggregate in contact with the lipid surface.


Assuntos
Peptídeos Penetradores de Células/farmacocinética , Galactose/farmacocinética , Modelos Biológicos , Triptofano/farmacocinética , Animais , Células CHO , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Cricetinae , Cricetulus , Galactose/química , Galactose/farmacologia , Estrutura Secundária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química , Triptofano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA