Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(6): 5289-5295, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38264912

RESUMO

Incorporation of other transition metals in Au nanoclusters has been thriving recently due to its effect on their electronic and photophysical properties. Here, the ultrasmall phosphine-stabilized Rh-doped gold clusters AunRh (n = 5, 6, 7, 8), with metal core structures represented as fragments of a rhodium-centered icosahedron, are considered. The geometric and electronic properties of these nanoclusters are revisited and analyzed using density functional theory (DFT). Moreover, infrared spectra are simulated to identify the effects of Rh doping on the clusters through vibrational properties. Peaks are assigned to breathing-like normal modes for all AuRh clusters except for Au8Rh, likely due to the presence of bound Cl ligands. Unlike their pure gold core counterparts, the % motions of both Au and Rh atoms are lower in the mixed metal clusters, suggesting more restrained metal cores by rhodium, which could result in other novel physical and chemical properties not hitherto discovered.

2.
Angew Chem Int Ed Engl ; 56(29): 8412-8416, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28160366

RESUMO

Single-crystal X-ray crystallography is employed to characterize the reaction species of a full catalytic carbonylation cycle within a MnII -based metal-organic framework (MOF) material. The structural insights explain why the Rh metalated MOF is catalytically competent toward the carbonylation of MeBr but only affords stoichiometric turn-over in the case of MeI. This work highlights the capability of MOFs to act as platform materials for studying single-site catalysis in heterogeneous systems.

3.
J Chem Phys ; 144(11): 114703, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27004889

RESUMO

Triphenylphosphine ligand-protected Au9 clusters deposited onto titania nanosheets show three different atomic configurations as observed by scanning transmission electron microscopy. The configurations observed are a 3-dimensional structure, corresponding to the previously proposed Au9 core of the clusters, and two pseudo-2-dimensional (pseudo-2D) structures, newly found by this work. With the help of density functional theory (DFT) calculations, the observed pseudo-2D structures are attributed to the low energy, de-ligated structures formed through interaction with the substrate. The combination of scanning transmission electron microscopy with DFT calculations thus allows identifying whether or not the deposited Au9 clusters have been de-ligated in the deposition process.

4.
Inorg Chem ; 53(9): 4340-9, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24758282

RESUMO

High-quality far-IR absorption spectra for a series of ligated atomically precise clusters containing Ru3, Ru4, and AuRu3 metal cores have been observed using synchrotron radiation, the latter two for the first time. The experimental spectra are compared with predicted IR spectra obtained following complete geometric optimization of the full cluster, including all ligands, using DFT. We find strong correlations between the experimental and predicted transitions for the low-frequency, low-intensity metal core vibrations as well as the higher frequency and intensity metal-ligand vibrations. The metal core vibrational bands appear at 150 cm(-1) for Ru3(CO)12, and 153 and 170 cm(-1) for H4Ru4(CO)12, while for the bimetallic Ru3(µ-AuPPh3)(µ-Cl)(CO)10 cluster these are shifted to 177 and 299 cm(-1) as a result of significant restructuring of the metal core and changes in chemical composition. The computationally predicted IR spectra also reveal the expected atomic motions giving rise to the intense peaks of metal-ligand vibrations at ca. 590 cm(-1) for Ru3, 580 cm(-1) for Ru4, and 560 cm(-1) for AuRu3. The obtained correlations allow an unambiguous identification of the key vibrational modes in the experimental far-IR spectra of these clusters for the first time.


Assuntos
Ouro/química , Compostos de Rutênio/química , Espectrofotometria Infravermelho/métodos , Vibração
5.
J Chem Phys ; 141(1): 014702, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25005298

RESUMO

Chemically made, atomically precise phosphine-stabilized clusters Au9(PPh3)8(NO3)3 were deposited on titania and silica from solutions at various concentrations and the samples heated under vacuum to remove the ligands. Metastable induced electron spectroscopy was used to determine the density of states at the surface, and X-ray photoelectron spectroscopy for analysing the composition of the surface. It was found for the Au9 cluster deposited on titania that the ligands react with the titania substrate. Based on analysis using the singular value decomposition algorithm, the series of MIE spectra can be described as a linear combination of 3 base spectra that are assigned to the spectra of the substrate, the phosphine ligands on the substrate, and the Au clusters anchored to titania after removal of the ligands. On silica, the Au clusters show significant agglomeration after heat treatment and no interaction of the ligands with the substrate can be identified.

6.
Phys Chem Chem Phys ; 15(11): 3917-29, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400365

RESUMO

Synchrotron XPS was used to investigate a series of chemically-synthesised, atomically-precise gold clusters Au(n)(PPh(3))(y) (n = 8, 9, 11 and 101, with y depending on cluster size) immobilized on titania nanoparticles. The gold clusters were washed with toluene at 100 °C or calcined at 200 °C to remove the organic ligand. From the position of the Au 4f(7/2) peak it is concluded that cluster size is not altered through the deposition. From the analysis of the phosphorous spectra, it can be concluded that the applied heat treatment removes the organic ligands. Washing and calcination leads to partial oxidation and partial agglomeration of the clusters. Oxidation of the clusters is most likely due to the interaction of the cluster core with the oxygen of the titania surface after removal of ligands. The position of the Au 4f(7/2) peak indicates that the size of the agglomerated clusters is still smaller than that of Au(101).

7.
Phys Chem Chem Phys ; 15(35): 14806-13, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23907108

RESUMO

Synchrotron XPS was used to investigate a series of chemically synthesised, atomically precise gold clusters Au(n)(PPh3)y (n = 8, 9 and 101, y depending on the cluster size) immobilized on anatase (titania) nanoparticles. Effects of post-deposition treatments were investigated by comparison of untreated samples with analogues that have been heat treated at 200 °C in O2, or in O2 followed by H2 atmosphere. XPS data shows that the phosphine ligands are oxidised upon heat treatment in O2. From the position of the Au 4f(7/2) peak it can be concluded that the clusters partially agglomerate immediately upon deposition. Heating in oxygen, and subsequently in hydrogen, leads to further agglomeration of the gold clusters. It is found that the pre-treatment plays a crucial role in the removal of ligands and agglomeration of the clusters.

8.
J Phys Chem A ; 114(12): 4080-5, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20192196

RESUMO

We have used photoionization efficiency spectroscopy to determine ionization energies (IEs) of the gas-phase tantalum-carbide clusters Ta(5)C(y) (y = 0-6). The structures of the clusters observed in the experiment are assigned by comparing the experimental IEs with those of candidate isomers, calculated by density functional theory. Two competing geometries of the underlying Ta(5) cluster are found to be present in the assigned Ta(5)C(y) structures; either a "prolate" or "distorted oblate" trigonal bipyramid geometry. The onset of carbon-carbon bonding in the Ta(5)C(y) series is proposed to occur at y = 6, with the structure of Ta(5)C(6) containing two molecular C(2) units.

9.
Rev Sci Instrum ; 88(5): 054101, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571412

RESUMO

A high-temperature, high-pressure, pulsed-gas sampling and detection system has been developed for testing new catalytic and photocatalytic materials for the production of solar fuels. The reactor is fitted with a sapphire window to allow the irradiation of photocatalytic samples from a lamp or solar simulator light source. The reactor has a volume of only 3.80 ml allowing for the investigation of very small quantities of a catalytic material, down to 1 mg. The stainless steel construction allows the cell to be heated to 350 °C and can withstand pressures up to 27 bar, limited only by the sapphire window. High-pressure sampling is made possible by a computer controlled pulsed valve that delivers precise gas flow, enabling catalytic reactions to be monitored across a wide range of pressures. A residual gas analyser mass spectrometer forms a part of the detection system, which is able to provide a rapid, real-time analysis of the gas composition within the photocatalytic reaction chamber. This apparatus is ideal for investigating a number of industrially relevant reactions including photocatalytic water splitting and CO2 reduction. Initial catalytic results using Pt-doped and Ru nanoparticle-doped TiO2 as benchmark experiments are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA